Bilayered vanadium oxides are attractive for energy storage due to their high initial specific capacities, which could be stabilized by integrating the bilayers with conductive nanoflakes often produced in a form of aqueous dispersions. Therefore, exfoliation of the bilayered vanadium oxides in water with high yield is desirable. This work introduces the first aqueous exfoliation of chemically prelithiated bilayered vanadium oxide (i.e., δ-Li x V2O5·nH2O or LVO) followed by vacuum filtration to produce a free-standing film, exhibiting a lamellar stacking of the bilayered vanadium oxide nanoflakes as evidenced by scanning electron microscopy. Due to the hydrated nature of bilayered vanadium oxides, the relationship between interlayer water content and the vacuum drying temperature (105 °C vs 200 °C) was studied using X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. It was found that vacuum drying the LVO nanoflakes at 200 °C enabled more efficient removal of crystallographic water than drying at 105 °C, and did not induce a phase transformation. Scanning transmission electron microscopy confirmed the layered structure of the samples, which was more well-ordered in the 200 °C case and had no clear boundaries between flakes at the atomic scale. Furthermore, electrochemical testing in nonaqueous Li-ion cells revealed that vacuum drying at 200 °C led to improvements in ion storage capacity and electrochemical stability. Improvements in electrochemical charge storage properties of the electrodes obtained via LVO exfoliation and free-standing film assembly in water dried at 200 °C reveal that conventional battery electrode drying protocols need to be revised as new electrochemically active materials are synthesized, such as hydrated layered oxides with expanded interlayer regions. The remaining capacity fading can be attributed to the structural LVO degradation, dissolution of vanadium oxide in electrolyte, and parasitic effects of the remaining interlayer water molecules. Our results establish an environmentally friendly and safe approach to obtain two-dimensional (2D) bilayered vanadium oxide nanoflakes and create a pathway to constructing novel 2D heterostructures for improved performance in energy storage applications.
Lithium preintercalated bilayered vanadium oxide (LVO or δ-Li x V2O5·nH2O) and graphene oxide (GO) nanoflakes were assembled using a concentrated lithium chloride solution and annealed under vacuum at 200 °C to form two-dimensional (2D) δ-Li x V2O5·nH2O and reduced GO (rGO) heterostructures. We found that the Li+ ions from LiCl enhanced the oxide/carbon heterointerface formation and served as stabilizing ions to improve structural and electrochemical stability. The graphitic content of the heterostructure could be easily controlled by changing the initial GO concentration prior to assembly. We found that increasing the GO content in our heterostructure composition helped inhibit the electrochemical degradation of LVO during cycling and improved the rate capability of the heterostructure. A combination of scanning electron microscopy and X-ray diffraction was used to help confirm that a 2D heterointerface formed between LVO and GO, and the final phase composition was determined using energy-dispersive X-ray spectroscopy and thermogravimetric analysis. Scanning transmission electron microscopy and electron energy-loss spectroscopy were additionally used to examine the heterostructures at high resolution, mapping the orientations of rGO and LVO layers and locally imaging their interlayer spacings. Further, electrochemical cycling of the cation-assembled LVO/rGO heterostructures in Li-ion cells with a non-aqueous electrolyte revealed that increasing the rGO content led to improved cycling stability and rate performance, despite slightly decreased charge storage capacity. The heterostructures with 0, 10, 20, and 35 wt % rGO exhibited capacities of 237, 216, 174, and 150 mAh g–1, respectively. Moreover, the LVO/rGO-35 wt % and LVO/rGO-20 wt % heterostructures retained 75% (110 mAh g–1) and 67% (120 mAh g–1) of their initial capacities after increasing the specific current from 20 to 200 mA g–1, while the LVO/rGO-10 wt % sample retained only 48% (107 mAh g–1) of its initial capacity under the same cycling conditions. In addition, the cation-assembled LVO/rGO electrodes exhibited enhanced electrochemical stability compared to electrodes prepared through physical mixing of LVO and GO nanoflakes in the same ratios as the heterostructure electrodes, further revealing the stabilizing effect of a 2D heterointerface. The cation-driven assembly approach, explored in this work using Li+ cations, was found to induce and stabilize the formation of stacked 2D layers of rGO and exfoliated LVO. The reported assembly methodology can be applied for a variety of systems utilizing 2D materials with complementary properties for applications as electrodes in energy storage devices.
Chemically preintercalated dopamine (DOPA) molecules were used as both a reducing agent and a carbon precursor to prepare δ‐V2O5·nH2O/C, H2V3O8/C, VO2(B)/C, and V2O3/C nanocomposites via hydrothermal treatment or hydrothermal treatment followed by annealing under Ar flow. We found that the phase composition and morphology of the produced composites are influenced by the DOPA:V2O5 ratio used to synthesize (DOPA)xV2O5 precursors through DOPA diffusion into the interlayer region of the δ‐V2O5·nH2O framework. The increase of DOPA concentration in the reaction mixture led to a more pronounced reduction of vanadium and a higher fraction of carbon in the composites’ structure, as evidenced by X‐ray photoelectron spectroscopy and Raman spectroscopy measurements. The electrochemical charge storage properties of the synthesized nanocomposites were evaluated in Li‐ion cells with nonaqueous electrolytes. δ‐V2O5·nH2O/C, H2V3O8/C, VO2(B)/C, and V2O3/C electrodes delivered high initial capacities of 214, 252, 279, and 637 mAh g–1, respectively. The insights provided by this investigation open up the possibility of creating new nanocomposite oxide/carbon electrodes for a variety of applications, such as energy storage, sensing, and electrochromic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.