We conducted two experiments that compared distance perception in real and virtual environments in six visual presentation methods using either timed imagined walking or direct blindfolded walking, while controlling for several other factors that could potentially impact distance perception. Our presentation conditions included unencumbered real world, real world seen through an HMD, virtual world seen through an HMD, augmented reality seen through an HMD, virtual world seen on multiple, large immersive screens, and photo-based presentation of the real world seen on multiple, large immersive screens. We found that there was a similar degree of underestimation of distance in the HMD and large-screen presentations of virtual environments. We also found that while wearing the HMD can cause some degree of distance underestimation, this effect depends on the measurement protocol used. Finally, we found that photo-based presentation did not help to improve distance perception in a large-screen immersive display system. The discussion focuses on points of similarity and difference with previous work on distance estimation in real and virtual environments.
Two experiments examined how 10- and 12-year-old children and adults intercept moving gaps while bicycling in an immersive virtual environment. Participants rode an actual bicycle along a virtual roadway. At 12 test intersections, participants attempted to pass through a gap between 2 moving, car-sized blocks without stopping. The blocks were timed such that it was sometimes necessary for participants to adjust their speed in order to pass through the gap. We manipulated available visual information by presenting the target blocks in isolation in Experiment 1 and in streams of blocks in Experiment 2. In both experiments, adults had more time to spare than did children. Both groups had more time to spare when they were required to slow down than when they were required to speed up. Participants’ behavior revealed a multistage interception strategy that cannot be explained by the use of a monotonic control law such as the constant bearing angle strategy. The General Discussion section focuses on possible sources of changes in perception-action coupling over development and on task-specific constraints that could underlie the observed interception strategy.
This investigation examined how children and adults negotiate a challenging perceptual-motor problem with significant real-world implications – bicycling across two lanes of opposing traffic. Twelve- and 14-year-olds and adults rode a bicycling simulator through an immersive virtual environment. Participants crossed intersections with continuous cross traffic coming from opposing directions. Opportunities for crossing were divided into aligned (far gap opens with or before near gap) and rolling (far gap opens after near gap) gap pairs. Children and adults preferred rolling to aligned gap pairs, though this preference was stronger for adults than for children. Crossing aligned versus rolling gap pairs produced substantial differences in direction of travel, speed of crossing, and timing of entry into the near and far lanes. For both aligned and rolling gap pairs, children demonstrated less skill than adults in coordinating self and object movement. These findings have implications for understanding perception-action-cognition links and for understanding risk factors underlying car-bicycle collisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.