Coarse-grained, mesoscale simulations are invaluable for studying soft condensed matter because of their ability to model systems in which a background solvent plays a substantial role but is not the primary interest. Such methods generally model passive solvents; however, far-from-equilibrium systems may also be composed of complex solutes suspended in an active fluid. Yet, few coarse-grained simulation methods exist to model an active medium. We introduce an algorithm to simulate active nematics, which builds on multiparticle collision dynamics (MPCD) for passive fluctuating nematohydrodynamics by introducing dipolar activity in the local collision operator. Active nematic MPCD (AN-MPCD) simulations not only exhibit the key characteristics of active nematic turbulence but, as a particle-based algorithm, also reproduce crucial attributes of active particle models. Thus, mesoscopic AN-MPCD is an approach that bridges microscopic and continuum descriptions, allowing simulations of composite active-passive systems.
Coarse-grained, mesoscale simulations are invaluable for studying soft condensed matter because of their ability to model systems in which a background solvent plays a significant role but is not the primary interest. Such methods generally model passive solvents; however, far-from-equilibrium systems may also be composed of complex solutes suspended in an active fluid. Yet, few coarsegrained simulation methods exist to model an active medium. We introduce an algorithm to simulate active nematics, which builds on multi-particle collision dynamics (MPCD) for passive fluctuating nematohydrodynamics by introducing dipolar activity in the local collision operator. Active-nematic MPCD (AN-MPCD) simulations exhibit the key characteristics of active nematic turbulence but, as a particle-based algorithm, also reproduce crucial attributes of active particle models. Thus, mesoscopic AN-MPCD is an approach that bridges microscopic and continuum descriptions, allowing novel simulations of composite active-passive systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.