Legged robots are an efficient alternative for navigation in challenging terrain. In this paper we describe Weaver, a six‐legged robot that is designed to perform autonomous navigation in unstructured terrain. It uses stereo vision and proprioceptive sensing based terrain perception for adaptive control while using visual‐inertial odometry for autonomous waypoint‐based navigation. Terrain perception generates a minimal representation of the traversed environment in terms of roughness and step height. This reduces the complexity of the terrain model significantly, enabling the robot to feed back information about the environment into its controller. Furthermore, we combine exteroceptive and proprioceptive sensing to enhance the terrain perception capabilities, especially in situations in which the stereo camera is not able to generate an accurate representation of the environment. The adaptation approach described also exploits the unique properties of legged robots by adapting the virtual stiffness, stride frequency, and stride height. Weaver's unique leg design with five joints per leg improves locomotion on high gradient slopes, and this novel configuration is further analyzed. Using these approaches, we present an experimental evaluation of this fully self‐contained hexapod performing autonomous navigation on a multiterrain testbed and in outdoor terrain.
Autonomous exploration of subterranean environments constitutes a major frontier for robotic systems, as underground settings present key challenges that can render robot autonomy hard to achieve. This problem has motivated the DARPA Subterranean Challenge, where teams of robots search for objects of interest in various underground environments. In response, we present the CERBERUS system-of-systems, as a unified strategy for subterranean exploration using legged and flying robots. Our proposed approach relies on ANYmal quadraped as primary robots, exploiting their endurance and ability to traverse challenging terrain. For aerial robots, we use both conventional and collision-tolerant multirotors to explore spaces too narrow or otherwise unreachable by ground systems. Anticipating degraded sensing conditions, we developed a complementary multimodal sensor-fusion approach, utilizing camera, LiDAR, and inertial data for resilient robot pose estimation. Individual robot pose estimates are refined by a centralized multi-robot map-optimization approach to improve the reported location accuracy of detected objects of interest in the DARPA-defined coordinate frame. Furthermore, a unified exploration path-planning policy is presented to facilitate the autonomous operation of both legged and aerial robots in complex underground networks. Finally, to enable communication among team agents and the base station, CERBERUS utilizes a ground rover with a high-gain antenna and an optical fiber connection to the base station and wireless “breadcrumb” nodes deployed by the legged robots. We report results from the CERBERUS system-of-systems deployment at the DARPA Subterranean Challenge’s Tunnel and Urban Circuit events, along with the current limitations and the lessons learned for the benefit of the community.
Abstract-This work introduces a novel hybrid control architecture for a hexapod platform (Weaver), making it capable of autonomously navigating in uneven terrain. The main contribution stems from the use of vision-based exteroceptive terrain perception to adapt the robot's locomotion parameters. Avoiding computationally expensive path planning for the individual foot tips, the adaptation controller enables the robot to reactively adapt to the surface structure it is moving on. The virtual stiffness, which mainly characterizes the behavior of the legs' impedance controller is adapted according to visually perceived terrain properties. To further improve locomotion, the frequency and height of the robot's stride are similarly adapted. Furthermore, novel methods for terrain characterization and a keyframe based visual-inertial odometry algorithm are combined to generate a spatial map of terrain characteristics. Localization via odometry also allows for autonomous missions on variable terrain by incorporating global navigation and terrain adaptation into one control architecture. Autonomous runs on a testbed with variable terrain types illustrate that adaptive stride and impedance behavior decreases the cost of transport by 30 % compared to a non-adaptive approach and simultaneously increases body stability (up to 88 % on even terrain and by 54 % on uneven terrain). Weaver is able to freely explore outdoor environments as it is completely free of external tethers, as shown in the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.