Genome-wide association studies have identified thousands of loci for common diseases, but, for the majority of these, the mechanisms underlying disease susceptibility remain unknown. Most associated variants are not correlated with protein-coding changes, suggesting that polymorphisms in regulatory regions probably contribute to many disease phenotypes. Here we describe the Genotype-Tissue Expression (GTEx) project, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues
Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysis of RNA sequencing data from 1641 samples across 43 tissues from 175 individuals, generated as part of the pilot phase of the Genotype-Tissue Expression (GTEx) project. We describe the landscape of gene expression across tissues, catalog thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants, describe complex network relationships, and identify signals from genome-wide association studies explained by eQTLs. These findings provide a systematic understanding of the cellular and biological consequences of human genetic variation and of the heterogeneity of such effects among a diverse set of human tissues.
Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall-degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.Plant-parasitic nematodes are responsible for global agricultural losses amounting to an estimated $157 billion annually. Although chemical nematicides are the most reliable means of controlling root-knot nematodes, they are increasingly being withdrawn owing to their toxicity to humans and the environment. Novel and specific targets are thus needed to develop new strategies against these pests.The Southern root-knot nematode Meloidogyne incognita is able to infect the roots of almost all cultivated plants, making it perhaps the
Transposable elements (TEs) are mobile, repetitive DNA sequences that are almost ubiquitous in prokaryotic and eukaryotic genomes. They have a large impact on genome structure, function and evolution. With the recent development of high-throughput sequencing methods, many genome sequences have become available, making possible comparative studies of TE dynamics at an unprecedented scale. Several methods have been proposed for the de novo identification of TEs in sequenced genomes. Most begin with the detection of genomic repeats, but the subsequent steps for defining TE families differ. High-quality TE annotations are available for the Drosophila melanogaster and Arabidopsis thaliana genome sequences, providing a solid basis for the benchmarking of such methods. We compared the performance of specific algorithms for the clustering of interspersed repeats and found that only a particular combination of algorithms detected TE families with good recovery of the reference sequences. We then applied a new procedure for reconciling the different clustering results and classifying TE sequences. The whole approach was implemented in a pipeline using the REPET package. Finally, we show that our combined approach highlights the dynamics of well defined TE families by making it possible to identify structural variations among their copies. This approach makes it possible to annotate TE families and to study their diversification in a single analysis, improving our understanding of TE dynamics at the whole-genome scale and for diverse species.
Mapping expression Quantitative Trait Loci (eQTLs) represents a powerful and widely adopted approach to identifying putative regulatory variants and linking them to specific genes. Up to now eQTL studies have been conducted in a relatively narrow range of tissues or cell types. However, understanding the biology of organismal phenotypes will involve understanding regulation in multiple tissues, and ongoing studies are collecting eQTL data in dozens of cell types. Here we present a statistical framework for powerfully detecting eQTLs in multiple tissues or cell types (or, more generally, multiple subgroups). The framework explicitly models the potential for each eQTL to be active in some tissues and inactive in others. By modeling the sharing of active eQTLs among tissues, this framework increases power to detect eQTLs that are present in more than one tissue compared with “tissue-by-tissue” analyses that examine each tissue separately. Conversely, by modeling the inactivity of eQTLs in some tissues, the framework allows the proportion of eQTLs shared across different tissues to be formally estimated as parameters of a model, addressing the difficulties of accounting for incomplete power when comparing overlaps of eQTLs identified by tissue-by-tissue analyses. Applying our framework to re-analyze data from transformed B cells, T cells, and fibroblasts, we find that it substantially increases power compared with tissue-by-tissue analysis, identifying 63% more genes with eQTLs (at FDR = 0.05). Further, the results suggest that, in contrast to previous analyses of the same data, the majority of eQTLs detectable in these data are shared among all three tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.