The relaxation of binary spins to analog values has been the subject of much debate in the field of statistical physics, neural networks, and more recently quantum computing, notably because the benefits of using an analog state for finding lower energy spin configurations are usually offset by the negative impact of the improper mapping of the energy function that results from the relaxation. We show that it is possible to destabilize trapping sets of analog states that correspond to local minima of the binary spin Hamiltonian by extending the phase space to include error signals that correct amplitude inhomogeneity of the analog spin states and controlling the divergence of their velocity. Performance of the proposed analog spin system in finding lower energy states is competitive against state-of-the-art heuristics.
In this article, we will introduce the basic concept and the quantum feature of a novel computing system, coherent Ising machines, and describe their theoretical and experimental performance. We start with the discussion how to construct such physical devices as the quantum analog of classical neuron and synapse, and end with the performance comparison against various classical neural networks implemented in CPU and supercomputers.
The dynamics of driven-dissipative systems is shown to be well-fitted for achieving efficient combinatorial optimization. The proposed method can be applied to solve any combinatorial optimization problem that is equivalent to minimizing an Ising Hamiltonian. Moreover, the dynamics considered can be implemented using various physical systems as it is based on generic dynamics-the normal form of the supercritical pitchfork bifurcation. The computational principle of the proposed method relies on an hybrid analog-digital representation of the binary Ising spins by considering the gradient descent of a Lyapunov function that is the sum of an analog Ising Hamiltonian and archetypal single or double-well potentials. By gradually changing the shape of the latter potentials from a single to double well shape, it can be shown that the first nonzero steady states to become stable are associated with global minima of the Ising Hamiltonian, under the approximation that all analog spins have the same amplitude. In the more general case, the heterogeneity in amplitude between analog spins induces the stabilization of local minima, which reduces the quality of solutions to combinatorial optimization problems. However, we show that the heterogeneity in amplitude can be reduced by setting the parameters of the driving signal near a regime, called the dynamic phase transition, where the analog spins' DC components map more accurately the global minima of the Ising Hamiltonian which, in turn, increases the quality of solutions found. Last, we discuss the possibility of a physical implementation of the proposed method using networks of degenerate optical parametric oscillators.
A nonequilibrium open‐dissipative neural network, such as a coherent Ising machine based on mutually coupled optical parametric oscillators, has been proposed and demonstrated as a novel computing machine for hard combinatorial optimization problems. However, there is a challenge in the previously proposed approach: The machine can be trapped by local minima which increases exponentially with a problem size. This leads to erroneous solutions rather than correct answers. In this paper, it is shown that it is possible to overcome this problem partially by introducing error detection and correction feedback mechanism. The proposed machine achieves efficient sampling of degenerate ground states and low‐energy excited states via its inherent exploration property during a solution search process.
A coherent Ising machine (CIM) is a network of optical parametric oscillators (OPOs), in which the "strongest" collective mode of oscillation at well above threshold corresponds to an optimum solution of a given Ising problem. When a pump rate or network coupling rate is increased from below to above threshold, however, smallest eigenvectors of Ising coupling matrix [𝐽𝐽 𝑖𝑖𝑖𝑖 ] appear near threshold and impede the machine to relax to true ground states. Two complementary approaches to attack this problem are described here. One approach is to utilize squeezed/anti-squeezed vacuum noise of OPOs below threshold to produce coherent spreading over numerous local minima via quantum noise correlation, which could enable the machine to access very good solutions above threshold. The other approach is to implement real-time error correction feedback loop so that the machine migrates from one local minimum to another during an explorative search for ground states. Finally, a set of qualitative analogies connecting the CIM and traditional computer science techniques are pointed out.In particular, belief propagation and survey propagation used in combinatorial optimization are touched upon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.