An experimental study was carried out on bricks using local materials in order to take into account the waste wood management to protect the environment and to reduce the cost of the habitat. Chips and sawdust were built-in clay bricks in order to study their influence on the compressive strength, Young's modulus and the speed for soundproofing. Testings in compressive strength were made on the parallelepiped clay bricks, stabilized with different percentages of cement, with incorporation to various percentages of sawdust or wood chips (Mahogany), using a universal press. Young's modulus was measured from the speed of sound by the ultrasonic method. The results obtained show that the incorporation of mahogany tree chips in the stabilized brick at 8% of cement, does not have much effect on the compressive strength. It was found that the incorporation of chips or sawdust on the clay brick, does not improve the compressive strength. The Young's modulus decreases with increasing content of sawdust and practically remains constant regardless of the content of chips at 4% and 6% of cement. The clay brick mixed with 8% of mahogany sawdust can be an acoustic barrier.
In this paper, we are interested by the dissolution of NAPL (Non-Aqueous Phase Liquid) contaminants in heterogeneous soils or aquifers. The volume averaging technique is applied to 2D systems with Darcy-scale heterogeneities. A large-scale model is derived from a Darcy-scale dissolution model in the case of small and large Damkhöler numbers, i.e., for smooth or sharp dissolution fronts. The resulting models in both cases have the mathematical structure of a non-equilibrium dissolution model. It is shown how to calculate the resulting mass exchange and relative permeability terms from the Darcy-scale heterogeneities and other fluid properties. One of the important finding is that the obtained values have a very different behavior compared to the Darcy-scale usual correlations. The large scale correlations are also very different between the two limit cases. The resulting large-scale models are compared favorably to Darcy-scale direct simulations.
In this work, the authors made aquatic filters according to the formulation "clay stabilized at 4% of cement mixed with 4% of kambala sawdust and 10% of white sand" then heated to 1050˚C to decontaminate the waters of gutters and wells. The authors carried out geotechnical, geochemical, thermal, infrared spectroscopy, and scanning electron microscopy that analyzed the clay material. Geotechnical analyzes have shown that this material is made up of 22% thin sand, 22% of silt, and 56% of clay with 26 plasticity index. The geochemical analysis showed the presence of trace elements shared out as follows: 3% of alkaline metals, 24% of alkaline earth metals, 46% of transition metals, 10% of metal, 16% of lanthanides, 1% of actinides. The most abundant trace elements are barium (19%), vanadium (12%), chromium (11%) and zinc (9%). The thermal and microscopic analyzes revealed the kaolinitic nature of materials. The chemical depollution studies have shown elimination yields of 50% -52.38% of sulphates; 77.33% -85.19% of phosphates; 34.85% -88.49% nitrates; 91.3 -100 of sulphides; The removal of bacteriological pollution are 92.8% -98% of total germs; 94% -97% of total coliform and 95% -98% of E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.