In an attempt to determine the chemosensory cues, if any, provided by fats in the oral cavity, we have performed patch-clamp recordings on isolated rat taste receptor cells during application of free fatty acids. Cis-polyunsaturated fatty acids, when applied extracellularly, inhibit delayed-rectifying K+ channels. In a subset of cells, these fatty acids also enhance inwardly rectifying K+ currents. Saturated, monounsaturated, and trans-polyunsaturated fatty acids have no significant effect on K+ currents. These effects do not involve activation of G protein-mediated pathways, including protein kinase C and protein kinase A, lipoxygenase pathways, cyclooxygenase pathways, or cytochrome P-450 pathways, consistent with direct effects on these ion channels or closely associated proteins. The net effect of fatty acids is to prolong stimulus-induced depolarizations of taste receptor cells, and we propose the effects on K+ channels represent the mechanism by which fats are detected by receptor cells in the oral cavity.
Although the heteromeric combination of type 1 taste receptors 2 and 3 (T1r2 + T1r3) is well established as the major receptor for sugars and noncaloric sweeteners, there is also evidence of T1r-independent sweet taste in mice, particularly so for sugars. Before the molecular cloning of the T1rs, it had been proposed that sweet taste detection depended on ( a ) activation of sugar-gated cation channels and/or ( b ) sugar binding to G protein-coupled receptors to initiate second-messenger cascades. By either mechanism, sugars would elicit depolarization of sweet-responsive taste cells, which would transmit their signal to gustatory afferents. We examined the nature of T1r-independent sweet taste; our starting point was to determine if taste cells express glucose transporters (GLUTs) and metabolic sensors that serve as sugar sensors in other tissues. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we determined that several GLUTs (GLUT2, GLUT4, GLUT8, and GLUT9), a sodium–glucose cotransporter (SGLT1), and two components of the ATP-gated K + (K ATP ) metabolic sensor [sulfonylurea receptor (SUR) 1 and potassium inwardly rectifying channel (Kir) 6.1] were expressed selectively in taste cells. Consistent with a role in sweet taste, GLUT4, SGLT1, and SUR1 were expressed preferentially in T1r3-positive taste cells. Electrophysiological recording determined that nearly 20% of the total outward current of mouse fungiform taste cells was composed of K ATP channels. Because the overwhelming majority of T1r3-expressing taste cells also express SUR1, and vice versa, it is likely that K ATP channels constitute a major portion of K + channels in the T1r3 subset of taste cells. Taste cell-expressed glucose sensors and K ATP may serve as mediators of the T1r-independent sweet taste of sugars.
The role of amiloride-sensitive Na + channels (ASSCs) in the transduction of salty taste stimuli in rat fungiform taste buds has been well established. Evidence for the involvement of ASSCs in salt transduction in circumvallate and foliate taste buds is, at best, contradictory. In an attempt to resolve this apparent controversy, we have begun to look for functional ASSCs in taste buds isolated from fungiform, foliate, and circumvallate papillae of male Sprague-Dawley rats. By use of a combination of whole-cell and nystatin-perforated patchclamp recording, cells within the taste bud that exhibited voltage-dependent currents, reflective of taste receptor cells (TRCs), were subsequently tested for amiloride sensitivity. TRCs were held at -70 mV, and steady-state current and input resistance were monitored during superfusion of Na+-free saline and salines containing amiloride (0.1 wM to 1 mM). Greater than 90% of all TRCs from each of the papillae responded to Na + replacement with a decrease in current and an increase in input resistance, reflective of a reduction in electrogenic Na + movement into the cell. ASSCs were found in two thirds of fungiform and in one third of foliate TRCs, whereas none of the circumvallate TRCs was amiloride sensitive. These findings indicate that the mechanism for Na + influx differs among taste bud types. All amiloride-sensitive currents had apparent inhibition constants in the submicromolar range. These results agree with afferent nerve recordings and raise the possibility that the extensive labeling of the ASSC protein and mRNA in the circumvallate papillae may reflect a pool of nonfunctional channels or a pool of channels that lacks sensitivity to amiloride.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.