The alpha 1-adrenergic receptors (alpha 1-AR) belong to the G-protein coupled seven-transmembrane biogenic amine receptor family. Three subtypes have been successfully cloned in the alpha 1-adrenergic receptor family, and they share 50% identical amino acid sequences and 70% similarity. We have constructed seven chimeric receptors of the alpha 1A-AR. Each of the chimeras contains alpha 1D-subtype amino acid sequences within the membrane-spanning domains. Comparisons of ligand affinities with these chimeras has provided information on the importance of certain amino acid residues in determining receptor subtype specificity in the alpha 1A- and alpha 1D-ARs. With ligands in the dihydropyridine series, the niguldipine analog 1 was found to have respective pKi's of 9.32 +/- 0.17 for alpha 1A-AR; 6.84 +/- 0.24 for alpha 1D-AR; and 6.76 +/- 0.28 for alpha 1A/D(TM2), respectively. This trend was also exhibited by two other niguldipine analogs, 2 and 3, which had similar pKi's toward alpha 1D-AR and alpha 1A/D(TM2). This subtype selectivity was also maintained in the piperdine derivative, 4, and alpha 1A-AR selective ligand, which showed the same parallel trends in binding affinities with alpha 1A-AR and the six chimeras as the niguldipine analogs. Since in considering the second membrane-spanning domain, the alpha 1A- and alpha 1D-ARs only differ at positions 76, 77, 85, and 86, we were able to show through mutational studies that phenylalanine 86 is solely responsible for the selectivity found in the chimeric receptor alpha 1A/D(TM2) exhibited against the ligands 1-4 used in this study. A model based on the rhodopsin structure places the amino acid at position 86 in the final turn toward the extracellular region. This is four helical turns above aspartic acid-79, a conserved amino acid in the second membrane-spanning domain. This is the first report that suggests a significant involvement of the second membrane-spanning domain in antagonist binding in the biogenic amines class of the superfamily of seven-transmembrane receptors.
Mutational studies in conjunction with ligand binding assays were used to examine the basis of alpha1-adrenergic receptor subtype selectivity for a series of 4-piperidyloxazole antagonists. A set of chimeric alpha 1A receptors were created by systematically substituting individual transmembrane domains from alpha 1D adrenergic receptors. The oxazole antagonists exhibited significant reductions in affinity against the receptor construct alpha 1A/D(TM2), and moderate reductions in affinity versus constructs alpha 1A/D(TM5), alpha 1A/B(TM5), and alpha 1A/D(TM6). Antagonist affinities for these chimeras exceeded those found for wild type alpha 1D and alpha 1B. Site-directed mutagenesis methods were then used to explore the role that individual residues in TM2 and TM5 play in ligand binding affinity and selectivity. These studies revealed that mutations at position 86 in the second transmembrane domain and position 185 in the fifth transmembrane domain of the alpha 1A receptor have a major impact on receptor subtype selectivity.
Starting from phenethanolamine aniline leads 3a and 3b, we have identified a series of functionally potent and selective beta(3) adrenergic receptor (AR) agonists containing acylsulfonamide, sulfonylsulfonamide, or sulfonylurea groups within the aniline phenethanolamine series. In beta(3), beta(2), and beta(1) AR cAMP functional assays, 3a and other right-hand side (RHS) carboxylate analogues were found to be full agonists that were modestly selective against beta(1) or beta(2) ARs, while analogues lacking RHS acid functionality were active at beta(3) AR but not selective. Replacement of the carboxylate with acylthiazole and acylmethylsulfone gave potent, but only modestly selective, compounds. Increasing the size of the RHS sulfonamide substituent with phenyl or p-toluene afforded compounds with good potency and functional selectivity (beta(3) AR pEC(50) greater than 8; beta(1) and beta(2) AR selectivity greater than 40- and 500-fold, respectively). Our SAR studies suggest that the potency and selectivity profile of the best analogues reported here is a result of both the steric bulk and acidity of the RHS sulfonamide NH group. Although all of the analogues had a pharmacokinetic half-life of less than 2 h, acylsulfonamides 43 and 44 did show moderately low clearance in dogs. These two compounds were further evaluated by thermographic imaging in mice and were found to produce a robust thermogenic response via oral administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.