Aquatic turtles are suitable biomonitors of wetland ecosystem health because they are long-lived and occupy elevated trophic positions in wetland food webs. This study aimed to determine Hg exposure in adult Blanding's turtles (Emydoidea blandingii), an imperiled prairie-wetland species endemic to the northern U.S. and southern Canada. Claw samples were collected from gravid females from four wetland sites in northeast Illinois. Claw Hg concentrations ranged from 654 to 3132 ng/g and we found no effect of body size (carapace length, CL) and some evidence for an effect of wetland site (WS) on mean Hg (i.e. weak effect of site on Hg, detected between WS1 and WS3). Claw Hg concentrations reported in this study were lower than claw concentrations published for other freshwater turtles (e.g. Chelydra serpentina, Sternotherus oderatus). This is the first Hg-related study on Blanding's turtles and can serve as a reference for other Hg studies in Illinois wetlands.
Declining reptilian populations has been a growing concern over the last couple of decades. One such declining species of concern, the Blanding's turtle Emydoidea blandingii, occurs as isolated populations in North American prairie-wetlands and is at risk of extirpation due to habitat loss and fragmentation, and increased predator (e.g. racoons, coyotes) populations due to supplemented resources in urban environments. To help mitigate declining populations, wildlife managers have invested in the conservation of this species through head-starting (i.e. reared in ex situ) and juvenile release programs to augment wild Blanding's turtle populations. However, much of their spatial and winter/thermal ecology is understudied, and data for juveniles, and juveniles reared ex situ is especially scarce, yet this information is imperative to understanding shortfalls and improving head-starting efforts in the future. In spring 2016 (RR 2016 ) and 2017 (RR 2017 ) we released a cohort (n = 12 each year) of head-started juvenile Blanding's turtles equipped with radio transmitters and temperature dataloggers into a prairie-wetland in the greater Chicago region, North America. Using ground-based radio telemetry, we determined seasonal movement areas (SMAs; spring, summer and fall) and annual home ranges (AHRs) for both RR 2016 and RR 2017 cohorts via kernel density (KD) estimates. We also investigated the thermal characteristics of overwintering for both juvenile cohorts. We found that SMAs for the RR 2016 cohort, but not for the RR 2017 cohort, significantly differed across seasons for most SMA estimators. We also found that juveniles in both cohorts not only survived overwintering, but also displayed similar overwintering phenology (i.e. initiation: October-November; termination: April) and temperature variation as Blanding's turtles adults in other studies. Overall, our results indicate that head-started juvenile Blanding's turtles may be able to acclimatize quickly to their natural environment post-release. Our study provides evidence to the efficacy of well-developed head-starting programs that aim to augment and preserve imperiled turtle populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.