Periodic networks composed of capacitors and inductors have been demonstrated to possess topological properties with respect to incident electromagnetic waves. Here, we develop an analogy between the mathematical description of waves propagating in such networks and models of Majorana fermions hopping on a lattice. Using this analogy we propose simple electrical network architectures that realize Chern insulating phases for electromagnetic waves. Such Chern insulating networks have a bulk gap for a range of signal frequencies that is easily tunable and exhibit topologically protected chiral edge modes that traverse the gap and are robust to perturbations. The requisite time reversal symmetry breaking is achieved by including a class of weakly dissipative Hall resistor elements whose physical implementation we describe in detail. arXiv:1812.09862v2 [cond-mat.mes-hall]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.