The prevalence of clinically significant overgrowth related to chronic medication with calcium channel blockers is low, i.e., 6.3% for nifedipine. Males are 3 times as likely as females to develop clinically significant overgrowth. The presence of gingival inflammation is an important cofactor for the expression of this effect.
BACKGROUND Subclinical hypothyroidism (SCH) has been associated with ischemic heart disease (IHD); however, it is unknown whether treatment of SCH with levothyroxine sodium will reduce the risk of IHD. The aim of this study was to investigate the association between levothyroxine treatment of SCH with IHD morbidity and mortality. METHODS We used the United Kingdom General Practitioner Research Database to identify individuals with new SCH (serum thyrotropin levels of 5.01-10.0 mIU/L and normal free thyroxine levels) recorded during 2001 with outcomes analyzed until March 2009. All analyses were performed separately for younger (40-70 years) and older (>70 years) individuals. Hazard ratios (HRs) for IHD events (fatal and nonfatal) were calculated after adjustment for conventional IHD risk factors, baseline serum thyrotropin levels, and initiation of levothyroxine treatment as a time-dependent covariate. RESULTS Subclinical hypothyroidism was identified in 3093 younger and 1642 older individuals. For a median follow-up period of 7.6 years, 52.8% and 49.9% of younger and older patients with SCH were treated with levothyroxine, respectively. There were 68 incident IHD events in 1634 younger patients treated with levothyroxine (4.2%) vs 97 IHD events in 1459 untreated individuals (6.6%) (multivariate-adjusted HR, 0.61; 95% CI, 0.39-0.95). In contrast, in the older group there were 104 events in 819 treated patients (12.7%) vs 88 events in 823 untreated individuals (10.7%) (HR, 0.99; 95% CI, 0.59-1.33). CONCLUSIONS Treatment of SCH with levothyroxine was associated with fewer IHD events in younger individuals, but this was not evident in older people. An appropriately powered randomized controlled trial of levothyroxine in SCH examining vascular outcomes is now warranted.
Cross-ethnic genetic studies can leverage power from differences in disease epidemiology and population-specific genetic architecture. In particular, the differences in linkage disequilibrium and allele frequency patterns across ethnic groups may increase gene-mapping resolution. Here we use cross-ethnic genetic data in sporadic amyotrophic lateral sclerosis (ALS), an adult-onset, rapidly progressing neurodegenerative disease. We report analyses of novel genome-wide association study data of 1,234 ALS cases and 2,850 controls. We find a significant association of rs10463311 spanning GPX3-TNIP1 with ALS (p = 1.3 × 10−8), with replication support from two independent Australian samples (combined 576 cases and 683 controls, p = 1.7 × 10−3). Both GPX3 and TNIP1 interact with other known ALS genes (SOD1 and OPTN, respectively). In addition, GGNBP2 was identified using gene-based analysis and summary statistics-based Mendelian randomization analysis, although further replication is needed to confirm this result. Our results increase our understanding of genetic aetiology of ALS.
Objectives. Cytoplasmic inclusions containing TDP-43 are a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. TDP-43 is an RNA binding protein involved in gene regulation through control of RNA transcription, splicing and transport. However, the function of TDP-43 in the nervous system is largely unknown and its role in the pathogenesis of ALS is unclear. The aim of this study was to identify genes in the central nervous system that are regulated by TDP-43. Methods.RNA-immunoprecipitation with anti-TDP-43 antibody, followed by microarray analysis (RIPchip), was used to isolate and identify RNA bound to TDP-43 protein from mouse brain. Results.This analysis produced a list of 1,839 potential TDP-43 gene targets, many of which overlap with previous studies and whose functions include RNA processing and synaptic function.Immunohistochemistry demonstrated that the TDP-43 protein could be found at the presynaptic membrane of axon terminals in the neuromuscular junction in mice. Conclusions. The finding that TDP-43 binds to RNA that codes for genes related to synaptic function, together with the localisation of TDP-43 protein at axon terminals, suggest a role for TDP-43 in the transport of synaptic mRNAs into distal processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.