Introduction Assessment of functional recovery of service members following a concussion is central to their return to duty. Practical military-relevant performance-based tests are needed for identifying those who might need specialized rehabilitation, for evaluating the progress of recovery, and for making return-to-duty determinations. One such recently developed test is the ‘Portable Warrior Test of Tactical Agility’ (POWAR-TOTAL) assessment designed for use following concussion in an active duty population. This agility task involves maneuvers used in military training, such as rapid stand-to-prone and prone-to-stand transitions, combat rolls, and forward and backward running. The effect of concussion on the performance of such maneuvers has not been established. Materials and Methods The Institutional Review Board–approved study was conducted at Ft. Bragg, North Carolina, on 57 healthy control (HC) service members (SMs) and 42 well-matched SMs who were diagnosed with concussion and were referred for physical therapy with the intent to return to duty. Each study participant performed five consecutive trials of the POWAR-TOTAL task at full exertion while wearing inertial sensors, which were used to identify the constituent task maneuvers, or phases, and measure their durations. Statistical analyses were performed on durations of three main phases: (1) rising from prone and running, (2) lowering from vertical to prone, and (3) combat rolls. Results None of the three phases showed significant correlation with age (range 18-45 years) in either group. Gradual improvement in all three phase durations across five trials was observed in the HC group, but not in the concussed group. On average, control subjects performed significantly faster (P < .004 or less) than concussed subjects in all trials in the lowering and rolling phases, but less so in the rising/running phase. Membership in the concussed group had a strong effect on the lowering phase (Cohen’s d = 1.05), medium effect on the rolling phase (d = 0.72), and small effect on the rising/running phase (d = 0.49). Individuals in the HC group who had a history of prior concussions were intermediate between the concussed group and the never-concussed group in the lowering and rolling phases. Duration of transitional movements (lowering from standing to prone and combat rolls) was better at differentiating individuals’ performance by group (receiver operating characteristic area under the curve [AUC] = 0.83) than the duration of the entire POWAR-TOTAL task (AUC = 0.71). Conclusions Inertial sensor analysis reveals that rapid transitional movements (such as lowering from vertical to prone position and combat rolls) are particularly discriminative between SMs recovering from concussion and their concussion-free peers. This analysis supports the validity of POWAR-TOTAL as a useful tool for therapists who serve military SMs.
Postcentral topectomy is a neurosurgical procedure, practiced in the mid-20th century, in which surgical ablations of the primary somatosensory cortex were used as a therapeutic means of treating patients suffering from intractable chronic pain. While successful in curing some—but not all—patients, the procedure was poorly understood and eventually became displaced by methods that more consistently stopped patient complaints of pain, such as opiates and frontal lobotomies. However, a more recent discovery of a nociresponsive region in the transitional zone between the primary somatosensory cortex and the primary motor cortex (lying in Brodmann Area 3a anterior to its better known proprioceptive region) raises the possibility that the outcome of postcentral topectomy depended in each patient on whether the ablation extended deep enough into the central sulcus to remove this cortical region. Here we review every postcentral topectomy case we could find in the neurosurgical literature in order to evaluate its past effectiveness and to reassess its potential in light of modern knowledge of the cerebral cortex. We found 17 full-text reports from 16 different surgical teams describing outcomes of the procedure in 27 patients. Among those, in only 5 patients the procedure either failed to abolish the targeted chronic pain or the pain returned to its preoperational levels several weeks or months after the surgery. In the other 22 patients, their pain stayed abolished or at least significantly reduced as of the last evaluation by the treating physician (which was one year or more for 9 patients). We propose that the probability of a successful outcome might be brought to near 100% by selective targeting—guided by functional imaging—of the nociresponsive region in Area 3a.
While it has been previously demonstrated that concussion severity can be assessed using sensory tests of cortical functionality, the underlying neural mechanisms affected by concussion are still poorly understood. By using an animal model, it is possible to directly observe the neurophysiological effects of concussion, and thus shed light on the underlying changes in cortical functionality. In order to assess the effects of a single concussion, we recorded spike discharge activity of neurons in the rat primary somatosensory cortex prior to as well as 6-12hr and 78-86hr after a mild weight-drop impact-acceleration closed-head trauma. During the 6-12hr post-impact period, cortical spontaneous activity was elevated by 40% compared to the healthy control state, but its responsivity to vibrotactile stimulation was not significantly affected. However, the responsivity to vibrotactile stimulation did decline in the 78-86hr post-impact period. Also during this period, spontaneous activity in the middle and upper cortical layers was reduced by 35% below the healthy control state, but it remained high in the deep layers. We also recorded somatosensory cortical activity 6-12hr after delivering a second head trauma, identical to the one delivered 72hr prior. Although the two impacts mechanically were the same, the neurophysiological effect of the second impact was very different from that observed after the first impact: both the stimulus-evoked response and spontaneous activity were significantly reduced as compared to the same time period after the first impact. These findings demonstrate that mTBI alters the functional state of the somatosensory cortex in a post-injury time-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.