We performed a systematic study of soft X-ray absorption spectroscopy in various manganese oxides and fluorides. Both Mn L-edges and ligand (O and F) K-edges are presented and compared with each other. Despite the distinct crystal structure and covalent/ionic nature in different systems, the Mn-L spectra fingerprint the Mn valence and spin states through spectral lineshape and energy position consistently and evidently. The clear O-and F-K pre-edge features in our high resolution spectra enable a quantitative definition of the molecular orbital diagram with different Mn valence. In addition, while the binding energy difference of the O-1s core electrons leads to a small shift of the O-K leading edges between trivalent and quadrivalent manganese oxides, a significant edge shift, with an order of magnitude larger in energy, was found between divalent and trivalent compounds, which is attributed to the spin exchange stabilization of half-filled 3d system. This shift is much enhanced in the ionic fluoride system. This work provides the spectroscopic foundation for further studies of complicated Mn compounds.
High‐strain, high‐force mechanical actuation technologies are desirable for numerous applications ranging from microelectromechanical systems (MEMS) to large‐scale “smart structures” that are able to change shape to optimize performance. Here we show that electrochemical intercalation of inorganic compounds of high elastic modulus offers a low‐voltage mechanism (less than 5 V) with intrinsic energy density approaching that of hydraulics and more than a hundred times greater than that of existing field‐operated mechanisms, such as piezostriction and magnetostriction. Exploitation of the reversible crystallographic strains (several percent) of intercalation compounds while under high stress is key to realization of the available energy. Using a micromachined actuator design, we test the strain capability of oriented graphite due to electrochemical lithiation under stresses up to 200 MPa. We further demonstrate that simultaneous electrochemical expansion of the LiCoO2/graphite cathode/anode couple can be exploited for actuation under stresses up to ∼ 20 MPa in laminated macroscopic composite actuators of similar design to current lithium‐ion batteries. While the transport‐limited actuation mechanism of these devices results in intrinsically slower actuation compared to most ferroic materials, we demonstrate up to 6.7 mHz (150 s) cyclic actuation in a laminated actuator designed for a high charge/discharge rate. The potential for a new class of high‐strain, high‐force, moderate‐frequency actuators suitable for a broad range of applications is suggested.
Effect of excess lithium in LiMn2O4 and Li1.15Mn1.85O4 electrodes revealed by quantitative analysis of soft X-ray absorption spectroscopy Permalink https://escholarship.org/uc/item/0b89h1vh
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.