The capability to estimate the pose of known geometry from point cloud data is a frequently arising requirement in robotics and automation applications. This problem is directly addressed by Iterative Closest Point (ICP), however, this method has several limitations and lacks robustness. This paper makes the case for an alternative method that seeks to find the most likely solution based on available evidence. Specifically, an evidence-based metric is described that seeks to find the pose of the object that would maximise the conditional likelihood of reproducing the observed range measurements. A seedless search heuristic is also provided to find the most likely pose estimate in light of these measurements. The method is demonstrated to provide for pose estimation (2D and 3D shape poses as well as joint-space searches), object identification/classification, and platform localisation. Furthermore, the method is shown to be robust in cluttered or non-segmented point cloud data as well as being robust to measurement uncertainty and extrinsic sensor calibration.
Registration, also know as extrinsic calibration, is the process of determining the position and orientation of a sensor relative to a known frame of reference. For ranging sensors such as light detection and ranging (LiDAR) used in field robotic applications, the quality of the registration determines the utility of the range measurements. This paper makes two contributions. The first is the introduction of a new method, termed maximum sum of evidence (MSoE) for registering three‐dimensional LiDAR sensors to moving platforms. This method is shown to produce more accurate registration solutions than two leading methods for these sensors, the adaptive structure registration filter (ASRF) and Rényi quadratic entropy (RQE). The second contribution of the paper is to study the accuracy of the MSoE registration against these two other approaches. One of these, like the MSoE, requires a truth model of the environment. The other, a model‐free method, seeks the registration that minimizes the RQE of a compound point cloud. The main finding of this investigation is that while the model‐based methods prove more accurate than the model‐free approach, the results of all three methods are fit for their intended field robotic applications. This leads us to conclude that registration based on RQE is preferable in many, if not all, field robotic applications for reasons of convenience, since a truth model of the environment is not required.
The requirement to estimate the six degree-of-freedom pose of a moving platform frequently arises in automation applications. It is common to estimate platform pose by the fusion of global navigation satellite systems (GNSS) measurements and translational acceleration and rotational rate measurements from an inertial measurement unit (IMU). This paper considers a specific situation where two GNSS receivers and one IMU are used and gives the full formulation of a Kalman filter-based estimator to do this. A limitation in using this sensor set is the difficulty of obtaining accurate estimates of the degree of freedom corresponding to rotation about the line passing through the two GNSS receiver antenna centres. The GNSS-aided IMU formulation is extended to incorporate LiDAR measurements in both known and unknown environments to stabilise this degree of freedom. The performance of the pose estimator is established by comparing expected LiDAR range measurements with actual range measurements. Distributions of the terrain point-to-model error are shown to improve from 0.27m mean error to 0.06m when the GNSS-aided IMU estimator is augmented with LiDAR measurements. This precision is marginally degraded to 0.14m when the pose estimator is operated in an a prior unknown environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.