The Axl receptor tyrosine kinase was identified as a protein encoded by a transforming gene from primary human myeloid leukaemia cells by DNA-mediated transformation of NIH 3T3 cells. Axl is the founding member of a family of related receptors that includes Eyk, encoded by a chicken proto-oncogene originally described as a retroviral transforming gene, and c-Mer, encoded by a human proto-oncogene expressed in neoplastic B- and T-cell lines. The transforming activity of Axl demonstrates that the receptor can drive cellular proliferation. The function of Axl in non-transformed cells and tissues is unknown, but may involve the stimulation of cell proliferation in response to an appropriate signal, namely a ligand that activates the receptor. We report here the purification of an Axl stimulatory factor, and its identification as the product of growth-arrest-specific gene 6 (ref. 6). This is, to our knowledge, the first description of a ligand for the Axl family of receptors.
A protein ligand for the ECK receptor protein-tyrosine kinase has been isolated by using the extracellular domain (ECK-X) of the receptor as an affinity reagent. Initially, concentrated cell culture supernatants were screened for receptor binding activity using immobilized ECK-X in a surface plasmon resonance detection system. Subsequently, supernatants from selected cell lines were fractionated directly by receptor affinity chromatography, resulting in the single-step purification of B61, a protein previously identified as the product of an early response gene induced by tumour necrosis factor-alpha. We report here that recombinant B61 induces autophosphorylation of ECK in intact cells, consistent with B61 being an authentic ligand for ECK. ECK is a member of a large orphan receptor protein-tyrosine kinase family headed by EPH, and we suggest that ligands for other members of this family will be related to B61, and can be isolated in the same way.
The present study shows that recombinant human megakaryocyte growth and development factor (r-HuMGDF) behaves both as a megakaryocyte colony stimulating factor and as a differentiation factor in human progenitor cell cultures. Megakaryocyte colony formation induced with rHuMGDF is synergistically affected by stem cell factor but not by interleukin 3. Megakaryocytes stimulated with rHuMGDF demonstrate progressive cytoplasmic and nuclear maturation. Measurable levels of megakaryocyte growth and development factor in serum from patients undergoing myeloablative therapy and transplantation are shown to be elaborated in response to thrombocytopenic stress. These data support the concept that megakaryocyte growth and development factor is a physiologically regulated cytokine that is capable of supporting several aspects of megakaryopoiesis. (J. Clin. Invest. 1995Invest. . 95:2973Invest. -2978
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.