Inspiratory muscle training (IMT) has been studied as a rehabilitation tool and ergogenic aid in clinical, athletic, and healthy populations. This technique aims to improve respiratory muscle strength and endurance, which has been seen to enhance respiratory pressure generation, respiratory muscle weakness, exercise capacity, and quality of life. However, the effects of IMT have been discrepant between populations, with some studies showing improvements with IMT and others not. This may be due to the use of standardized IMT protocols which are uniformly applied to all study participants without considering individual characteristics and training needs. As such, we suggest that research on IMT veer away from a standardized, one-size-fits-all intervention, and instead utilize specific IMT training protocols. In particular, a more personalized approach to an individual’s training prescription based upon goals, needs, and desired outcomes of the patient or athlete. In order for the coach or practitioner to adjust and personalize a given IMT prescription for an individual, factors, such as frequency, duration, and modality will be influenced, thus inevitably affecting overall training load and adaptations for a projected outcome. Therefore, by integrating specific methods based on optimization, periodization, and personalization, further studies may overcome previous discrepancies within IMT research.
Many occupational and recreational settings require the use of protective and/or load-bearing apparatuses worn over the thoracic cavity, known as thoracic load carriage (LC). Compared to normal, unloaded exercise, thoracic LC exercise places an additional demand on the respiratory and limb locomotor systems by altering ventilatory mechanics as well as circulatory responses to exercise, thus accelerating the development of fatigue in the diaphragm and accessory respiratory muscles compared to unloaded exercise. This may be a consequence of the unique demands of thoracic LC, which places an additional mass load on the thoracic cavity and can restrict chest wall expansion. Therefore it is important to find effective strategies to ameliorate the detrimental effects of thoracic LC. Inspiratory muscle training is an intervention that aims to increase the strength and endurance of the diaphragm and accessory inspiratory muscle and may therefore be a useful strategy to optimize performance with thoracic LC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.