Exercise in the heat causes "central fatigue", associated with reduced skeletal muscle recruitment during sustained isometric contractions. A similar mechanism may cause fatigue during prolonged dynamic exercise in the heat. The aim of this study was to determine whether centrally regulated skeletal muscle recruitment was altered during dynamic exercise in hot (35 degrees C) compared with cool (15 degrees C) environments. Ten male subjects performed two self-paced, 20-km cycling time-trials, one at 35 degrees C (HOT condition) and one at 15 degrees C (COOL condition). Rectal temperature rose significantly in both conditions, reaching maximum values at 20 km of 39.2+/-0.2 degrees C in HOT and 38.8+/-0.1 degrees C in COOL (P<0.005 HOT vs. COOL). Core temperatures at all other distances were not different between conditions. Power output and integrated electromyographic activity (iEMG) of the quadriceps muscle began to decrease early in the HOT trial, when core temperatures, heart rates and ratings of perceived exertion (RPE) were similar in both conditions. iEMG was significantly lower in HOT than in COOL at 10 and 20 km, while power output was significantly reduced in the period from 80% to 100% of the trial duration in the HOT compared with COOL condition. Thus, reduced power output and iEMG activity during self-paced exercise in the heat occurs before there is any abnormal increase in rectal temperature, heart rate or perception of effort. This adaptation appears to form part of an anticipatory response which adjusts muscle recruitment and power output to reduce heat production, thereby ensuring that thermal homeostasis is maintained during exercise in the heat.
Purpose:To analyze pacing strategies employed during men's world-record performances for 800-m, 5000-m, and 10,000-m races.Methods:In the 800-m event, lap times were analyzed for 26 world-record performances from 1912 to 1997. In the 5000-m and 10,000-m events, times for each kilometer were analyzed for 32 (1922 to 2004) and 34 (1921 to 2004) world records.Results:The second lap in the 800-m event was significantly slower than the first lap (52.0 ± 1.7 vs 54.4 ± 4.9 seconds, P < .00005). In only 2 world records was the second lap faster than the first lap. In the 5000-m and 10,000-m events, the first and final kilometers were significantly faster than the middle kilometer intervals, resulting in an overall even pace with an end spurt at the end.Conclusion:The optimal pacing strategy during world-record performances differs for the 800-m event compared with the 5000-m and 10,000-m events. In the 800-m event, greater running speeds are achieved in the first lap, and the ability to increase running speed on the second lap is limited. In the 5000-m and 10,000-m events, an end spurt occurs because of the maintenance of a reserve during the middle part of the race. In all events, pacing strategy is regulated in a complex system that balances the demand for optimal performance with the requirement to defend homeostasis during exercise.
We examined the variability and determinants of the respiratory exchange ratio (RER) at rest and during exercise in 61 trained cyclists. Fasting (10-12 h) RER was measured at rest and during exercise at 25, 50, and 70% of peak power output (W(peak)), during which blood samples were drawn for [lactate] and [free fatty acid] ([FFA]). Before these measurements, training volume, dietary intake and muscle fiber composition, [substrate], and enzyme activities were determined. There was large interindividual variability in resting RER (0.718-0.927) that persisted during exercise of increasing intensity. The major determinants of resting RER included muscle glycogen content, training volume, proportion of type 1 fibers, [FFA] and [lactate], and %dietary fat intake (adjusted r(2) = 0.59, P < 0.001). Except for muscle fiber composition, these variables also predicted RER at 25, 50, and 70% W(peak) to different extents. The key determinant at 25% W(peak) was blood-borne [substrate], at 50% was muscle [substrate] and glycolytic enzyme activities, and at 70% was [lactate]. Resting RER was also a significant determinant of RER at 25 (r = 0.60) and 50% (r = 0.44) W(peak).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.