The shear strength of liquefied soil, su(LIQ), mobilized during a liquefaction flow failure is normalized with respect to the vertical effective stress (σ 'vo) prior to failure to evaluate the liquefied strength ratio, su(LIQ)/σ 'vo. Liquefied strength ratios mobilized during 33 cases of liquefaction flow failure are estimated using a procedure developed to directly back-analyze the liquefied strength ratio. In ten cases, sufficient data regarding the flow slide are available to incorporate the kinetics, i.e., momentum, of failure in the back-analysis. Using liquefied strength ratios back-calculated from case histories, relationships between liquefied strength ratio and normalized standard penetration test blowcount and cone penetration test tip resistance are proposed. These relationships indicate approximately linear correlations between liquefied strength ratio and penetration resistance up to values of qc1 and (N1)60 of 6.5 MPa and 12 blows/ft (i.e., blows/0.3 m), respectively.Key words: liquefaction, flow failure, liquefied shear strength, stability analysis, kinetics, penetration resistance.
This paper presents recommendations for selecting the type and magnitude of drained shear strength parameters for analysis of landslides. In particular, the importance, existence, and use of the cohesion shear strength parameter is reviewed. For slope stability analyses, it is recommended that the shear strength be modeled using a stress dependent failure envelope or a friction angle that corresponds to the average effective normal stress acting on the slip surface passing through that particular material instead of using a combination of cohesion and friction angle to represent soil shear strength. Other recommendations for stability analyses include using an effective stress cohesion of zero for residual and fully softened strength situations. To facilitate selection of shear strength parameters for landslide analyses, empirical relationships for the drained residual and fully softened strengths are updated from the previous empirical relationships presented by Stark and Eid. Finally, the paper presents torsional ring shear test results that indicate that pre-existing shear surfaces exhibit self-healing that results in increased shear resistance. The magnitude of healing appears to increase with increasing soil plasticity, and this increase could have implications for the size, timing, and cost of landslide remediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.