Although fishing is one of the most widespread activities by which humans harvest natural resources, its global footprint is poorly understood and has never been directly quantified. We processed 22 billion automatic identification system messages and tracked >70,000 industrial fishing vessels from 2012 to 2016, creating a global dynamic footprint of fishing effort with spatial and temporal resolution two to three orders of magnitude higher than for previous data sets. Our data show that industrial fishing occurs in >55% of ocean area and has a spatial extent more than four times that of agriculture. We find that global patterns of fishing have surprisingly low sensitivity to short-term economic and environmental variation and a strong response to cultural and political events such as holidays and closures.
Effective ocean management and conservation of highly migratory species depends onresolving overlap between animal movements and distributions, and fishing effort.However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort.We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.Industrialised fishing is a major source of mortality for large marine animals (marine megafauna) 1-6 . Humans have hunted megafauna in the open ocean for at least 42,000 years 7 , but international fishing fleets targeting large, epipelagic fishes did not spread into the high seas (areas beyond national jurisdiction) until the 1950s 8 . Prior to this, the high seas constituted a spatial refuge largely free from exploitation as fishing pressure was concentrated on continental shelves 3,8 . Pelagic sharks are among the widest ranging vertebrates, with some species exhibiting annual ocean-basin-scale migrations 9 , long term trans-ocean movements 10 , and/or fine-scale site fidelity to preferred shelf and open ocean areas 5,9,11 . These behaviours could cause extensive spatial overlap with different fisheries from coastal areas to the deep ocean. On average, large pelagic sharks account for 52% of all identified shark catch worldwide in target fisheries or as bycatch 12 . Regional declines in abundance of pelagic sharks have been reported 13,14 , but it is unclear whether exposure to high fishing effort extends across ocean-wide population ranges and overlaps areas in the high seas where sharks are most abundant 5,13 .Conservation of pelagic sharkswhich currently have limited high seas management 12,15,16would benefit greatly from a clearer understanding of the spatial relationships between sharks' habitats and active fishing zones. However, obtaining unbiased estimates of shark and fisher distributions is complicated by the fact that most data on pelagic sharks come from catch records and other fishery-dependent sources 4,15,16 .Here, we provide the first global estimate of the extent of space use overlap of sharks with industrial fisheries. This is based on the analysis of the movements of pelagic sharks tagged with satellite transmitters in the Atlantic, Indian and Pacific oceans, together with fishing vessel movements m...
Large marine protected areas (MPAs) have recently been established throughout the world at an unprecedented pace, yet the value of these reserves for mobile species conservation remains unclear. Reef shark populations continue to decline even within some of the largest MPAs, fueling unresolved debates over the ability of protected areas to aid mobile species that transit beyond MPA boundaries. We assessed the capacity of a large MPA to conserve grey reef sharks - a Near Threatened species with a widespread distribution and poorly understood offshore movement patterns - using a combination of conventional tags, satellite tags, and an emerging vessel tracking technology. We found that the 54,000 km2 U.S. Palmyra Atoll National Wildlife Refuge in the central Pacific Ocean provides substantial protection for grey reef sharks, as two-thirds of satellite-tracked sharks remained within MPA boundaries for the entire study duration. Additionally, our analysis of > 0.5 million satellite detections of commercial fishing vessels identified virtually no fishing effort within the refuge and significant effort beyond the MPA perimeter, suggesting that large MPAs can effectively benefit reef sharks and other mobile species if properly enforced. However, our results also highlight limitations of place-based conservation as some of these reef-associated sharks moved surprising distances into pelagic waters (up to 926 km from Palmyra Atoll, 810 km beyond MPA boundaries). Small-scale fishermen operating beyond MPA boundaries (up to 366 km from Palmyra) captured 2% of sharks that were initially tagged at Palmyra, indicating that large MPAs provide substantial, though incomplete, protection for reef sharks
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.