BackgroundMultilevel data integration is becoming a major area of research in systems biology. Within this area, multi-‘omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-‘omics signatures of disease states.MethodsThe framework is divided into four major steps: dataset subsetting, feature filtering, ‘omics-based clustering and biomarker identification.ResultsWe illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-‘omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes.ConclusionsThis framework will help health researchers plan and perform multi-‘omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.Electronic supplementary materialThe online version of this article (10.1186/s12918-018-0556-z) contains supplementary material, which is available to authorized users.
BackgroundWe are creating software for agent-based simulation and visualization of bio-molecular processes in bacterial and eukaryotic cells. As a first example, we have built a 3-dimensional, interactive computer model of an Escherichia coli bacterium and its associated biomolecular processes. Our illustrative model focuses on the gene regulatory processes that control the expression of genes involved in the lactose operon. Prokaryo, our agent-based cell simulator, incorporates cellular structures, such as plasma membranes and cytoplasm, as well as elements of the molecular machinery, including RNA polymerase, messenger RNA, lactose permease, and ribosomes.ResultsThe dynamics of cellular ’agents’ are defined by their rules of interaction, implemented as finite state machines. The agents are embedded within a 3-dimensional virtual environment with simulated physical and electrochemical properties. The hybrid model is driven by a combination of (1) mathematical equations (DEQs) to capture higher-scale phenomena and (2) agent-based rules to implement localized interactions among a small number of molecular elements. Consequently, our model is able to capture phenomena across multiple spatial scales, from changing concentration gradients to one-on-one molecular interactions.We use the classic gene regulatory mechanism of the lactose operon to demonstrate our model’s resolution, visual presentation, and real-time interactivity. Our agent-based model expands on a sophisticated mathematical E. coli metabolism model, through which we highlight our model’s scientific validity.ConclusionWe believe that through illustration and interactive exploratory learning a model system like Prokaryo can enhance the general understanding and perception of biomolecular processes. Our agent-DEQ hybrid modeling approach can also be of value to conceptualize, illustrate, and—eventually—validate cell experiments in the wet lab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.