The Subseasonal Experiment (SubX) is a multimodel subseasonal prediction experiment designed around operational requirements with the goal of improving subseasonal forecasts. Seven global models have produced 17 years of retrospective (re)forecasts and more than a year of weekly real-time forecasts. The reforecasts and forecasts are archived at the Data Library of the International Research Institute for Climate and Society, Columbia University, providing a comprehensive database for research on subseasonal to seasonal predictability and predictions. The SubX models show skill for temperature and precipitation 3 weeks ahead of time in specific regions. The SubX multimodel ensemble mean is more skillful than any individual model overall. Skill in simulating the Madden–Julian oscillation (MJO) and the North Atlantic Oscillation (NAO), two sources of subseasonal predictability, is also evaluated, with skillful predictions of the MJO 4 weeks in advance and of the NAO 2 weeks in advance. SubX is also able to make useful contributions to operational forecast guidance at the Climate Prediction Center. Additionally, SubX provides information on the potential for extreme precipitation associated with tropical cyclones, which can help emergency management and aid organizations to plan for disasters.
There is a growing need for skilful predictions of climate up to a decade ahead. Decadal climate predictions show high skill for surface temperature, but confidence in forecasts of precipitation and atmospheric circulation is much lower. Recent advances in seasonal and annual prediction show that the signal-to-noise ratio can be too small in climate models, requiring a very large ensemble to extract the predictable signal. Here, we reassess decadal prediction skill using a much larger ensemble than previously available, and reveal significant skill for precipitation over land and atmospheric circulation, in addition to surface temperature. We further propose a more powerful approach than used previously to evaluate the benefit of initialisation with observations, improving our understanding of the sources of skill. Our results show that decadal climate is more predictable than previously thought and will aid society to prepare for, and adapt to, ongoing climate variability and change.npj Climate and Atmospheric Science (2019)2:13 ; https://doi.
The problem of separating variations due to natural and anthropogenic forcing from those due to unforced internal dynamics during the twentieth century is addressed using state-of-the-art climate simulations and observations. An unforced internal component that varies on multidecadal time scales is identified by a new statistical method that maximizes integral time scale. This component, called the internal multidecadal pattern (IMP), is stochastic and hence does not contribute to trends on long time scales; however, it can contribute significantly to short-term trends. Observational estimates indicate that the trend in the spatially averaged ''well observed'' sea surface temperature (SST) due to the forced component has an approximately constant value of 0.1 K decade 21 , while the IMP can contribute about 60.08 K decade 21 for a 30-yr trend. The warming and cooling of the IMP matches that of the Atlantic multidecadal oscillation and is of sufficient amplitude to explain the acceleration in warming during 1977-2008 as compared to 1946-77, despite the forced component increasing at the same rate during these two periods. The amplitude and time scale of the IMP are such that its contribution to the trend dominates that of the forced component on time scales shorter than 16 yr, implying that the lack of warming trend during the past 10 yr is not statistically significant. Furthermore, since the IMP varies naturally on multidecadal time scales, it is potentially predictable on decadal time scales, providing a scientific rationale for decadal predictions. While the IMP can contribute significantly to trends for periods of 30 yr or shorter, it cannot account for the 0.88C warming that has been observed in the twentieth-century spatially averaged SST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.