Despite the increasing number of effective anti-cancer therapies, successful treatment is limited by the development of drug resistance. While the contribution of genetic factors to drug resistance is undeniable, little is known about how drug-sensitive cells first evade drug action to proliferate in drug. Here we track the responses of thousands of single melanoma cells to BRAF inhibitors and show that a subset of cells escapes drug via non-genetic mechanisms within the first three days of treatment. Cells that escape drug rely on ATF4 stress signalling to cycle periodically in drug, experience DNA replication defects leading to DNA damage, and yet out-proliferate other cells over extended treatment. Together, our work reveals just how rapidly melanoma cells can adapt to drug treatment, generating a mutagenesis-prone subpopulation that expands over time.
SummaryResearch in biogerontology has largely focused on the complex relationship between mitochondrial dysfunction and biological aging. In particular, the mitochondrial free radical theory of aging (MFRTA) has been well accepted. However, this theory has been challenged by recent studies showing minimal increases in reactive oxygen species (ROS) as not entirely deleterious in nature, and even beneficial under the appropriate cellular circumstances. To assess these significant and nonintuitive observations in the context of a functional system, we have taken an in silico approach to expand the focus of the MFRTA by including other key mitochondrial stress response pathways, as they have been observed in the nematode Caenorhabditis elegans. These include the mitochondrial unfolded protein response (UPR
mt), mitochondrial biogenesis and autophagy dynamics, the relevant DAF‐16 and SKN‐1 axes, and NAD
+‐dependent deacetylase activities. To integrate these pathways, we have developed a multilevel hybrid‐modeling paradigm, containing agent‐based elements among stochastic system‐dynamics environments of logically derived ordinary differential equations, to simulate aging mitochondrial phenotypes within a population of energetically demanding cells. The simulation experiments resulted in accurate predictions of physiological parameters over time that accompany normal aging, such as the declines in both NAD
+ and ATP and an increase in ROS. Additionally, the in silico system was virtually perturbed using a variety of pharmacological (e.g., rapamycin, pterostilbene, paraquat) and genetic (e.g., skn‐1, daf‐16, sod‐2) schemes to quantitate the temporal alterations of specific mechanistic targets, supporting insights into molecular determinants of aging as well as cytoprotective agents that may improve neurological or muscular healthspan.
To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine‐mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio‐orthogonal strain‐promoted azide–alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5‐fold. Real‐time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h−1 vs 15 µm h−1). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho‐Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.