A method for improving weather and climate forecast skill has been developed. It is called a superensemble, and it arose from a study of the statistical properties of a low-order spectral model. Multiple regression was used to determine coefficients from multimodel forecasts and observations. The coefficients were then used in the superensemble technique. The superensemble was shown to outperform all model forecasts for multiseasonal, medium-range weather and hurricane forecasts. In addition, the superensemble was shown to have higher skill than forecasts based solely on ensemble averaging.
In this paper the performance of a multimodel ensemble forecast analysis that shows superior forecast skills is illustrated and compared to all individual models used. The model comparisons include global weather, hurricane track and intensity forecasts, and seasonal climate simulations. The performance improvements are completely attributed to the collective information of all models used in the statistical algorithm.The proposed concept is first illustrated for a low-order spectral model from which the multimodels and a ''nature run'' were constructed. Two hundred time units are divided into a training period (70 time units) and a forecast period (130 time units). The multimodel forecasts and the observed fields (the nature run) during the training period are subjected to a simple linear multiple regression to derive the statistical weights for the member models. The multimodel forecasts, generated for the next 130 forecast units, outperform all the individual models. This procedure was deployed for the multimodel forecasts of global weather, multiseasonal climate simulations, and hurricane track and intensity forecasts. For each type an improvement of the multimodel analysis is demonstrated and compared to the performance of the individual models. Seasonal and multiseasonal simulations demonstrate a major success of this approach for the atmospheric general circulation models where the sea surface temperatures and the sea ice are prescribed. In many instances, a major improvement in skill over the best models is noted.
Although a theory of the climatology of tropical cyclone formation remains elusive, high-resolution climate models can now simulate many aspects of tropical cyclone climate. T he effect of climate change on tropical cyclones has been a controversial scientific issue for a number of years. Advances in our theoretical understanding of the relationship between climate and tropical cyclones have been made, enabling us to understand better the links between the mean climate and the potential intensity (PI; the theoretical maximum intensity of a tropical cyclone for a given climate condition) of tropical cyclones. Improvements in the capabilities of climate models, the main tool used to predict future climate, have enabled them to achieve a considerably improved and more credible simulation of the present-day climatology of tropical cyclones. Finally, the increasing ability of such models to predict the interannual variability of tropical cyclone formation in various regions of the globe indicates that they are capturing some of the essential physical relationships governing the links between climate and tropical cyclones. HURRICANES AND CLIMATEPrevious climate model simulations, however, have suggested some ambiguity in projections of future numbers of tropical cyclones in a warmer world. While many models have projected fewer tropical cyclones globally (Sugi et al. 2002;Bengtsson et al. 2007b; Gualdi et al. 2008; Knutson et al. 2010), other climate models and related downscaling methods have suggested some increase in future numbers (e.g., Broccoli and Manabe 1990;Haarsma et al. 1993; Emanuel 2013a). When future projections for individual basins are made, the issue becomes more serious: for example, for the Atlantic basin there appears to be little consensus on the future number of tropical cyclones or on the relative importance of forcing factors such as aerosols or increases in carbon dioxide (CO 2 ) concentration. One reason could be statistical: annual numbers of tropical cyclones in the Atlantic are relatively small, making the identification of such storms sensitive to the detection method used.Further, there is substantial spread in projected responses of regional tropical cyclone (TC) frequency and intensity over the twenty-first century from downscaling studies (Knutson et al. 2007; Emanuel 2013a). Interpreting the sources of those differences is complicated by different projections of large-scale climate and by differences in the present-day reference period and sea surface temperature (SST) datasets used. A natural question is whether the diversity in responses to projected twenty-firstcentury climate of each of the studies is primarily | a reflection of uncertainty arising from different large-scale forcing (as has been suggested by, e.g., Villarini et al. 2011;Villarini and Vecchi 2012;Knutson et al. 2013) or whether this spread reflects principally different inherent sensitivities across the various downscaling techniques, even including different sensitivity of responses within the same model due to...
The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.
A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (18-0.258), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks' seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors' results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.