This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come. ARTICLE HISTORY
A screening-level in vitro test was developed to evaluate the relative solubility of ingested lead (Pb) from different mine wastes in the gastrointestinal (GI) tract. The in vitro method, modeled after assay methods for available iron from food, used a laboratory digestion procedure designed to reproduce GI tract chemistry and function. The in vitro method was independently calibrated against a rabbit feeding study, demonstrating that only 1-6% of the total Pb in four mine-waste samples with disparate Pb mineralogy was bioaccessible. In vitro method development tests indicated that H+ concentration and Clc omplexation control dissolution of Pb-bearing minerals in the stomach and that both GI tract enzymes and organic acids are necessary to maintain Pb in the soluble form on entering the small intestine. The experimental results indicate that ingestion of Pb-bearing mine wastes results in limited Pb solubility and that the in vitro test provides a screening-level estimate of the maximum available Pb from mine wastes.
This study investigates the extent of the rain-snow transition zone across the complex terrain of the western United States for both late 20th century climate and projected changes in climate by the mid-21st century. Observed and projected temperature and precipitation data at 4 km resolution were used with an empirical probabilistic precipitation phase model to estimate and map the likelihood of snow versus rain occurrence. This approach identifies areas most likely to undergo precipitation phase change over the next half century. At broad scales, these projections indicate an average 30% decrease in areal extent of winter wet-day temperatures conducive to snowfall over the western United States. At higher resolution scales, this approach identifies existing and potential experimental sites best suited for research investigating the mechanisms linking precipitation phase change to a broad array of processes, such as shifts in rain-on-snow flood risk, timing of water resource availability, and ecosystem dynamics.
Net canopy interception (I net ) during rainfall in an old-growth Douglas-fir-western hemlock ecosystem was 22.8 and 25.0% of the gross rainfall (P G ) for 1999 and 2000, respectively. The average direct throughfall proportion (p) and canopy storage capacity (S) derived from high-temporal resolution throughfall measurements were 0.36 and 3.3 mm, respectively. Derived values of S were very sensitive to the estimated evaporation during canopy wetting (I w ). Evaporation during wetting was typically small due to low vapor pressure deficits that usually occur at the start of an event, therefore I w is best estimated using the Penman method during canopy wetting, rather than assuming a constant evaporation rate over an entire event. S varied seasonally, from an average of 3.0 mm in the spring and fall, to 4.1 mm in the summer, coincident with canopy phenology changes. Interception losses during large storms that saturated the canopy accounted for 81% of I net . Canopy drying after events comprised 47% of I net , evaporation during rainfall comprised 33%, and evaporation during wetting accounted for 1%. Interception associated with small storms insufficient to saturate the canopy accounted for 19% of I net . The Gash analytical model accurately estimated both I net and the individual components of I net in this system when applied on an event basis, and when the Penman method was used to compute evaporation during rainfall. The Gash model performed poorly when applied on a daily basis, due to a rainfall regime characterized by long-duration events, which violated the assumption of one rain event per day.
The stable isotopes of water (hydrogen and oxygen isotopes) are of utmost interest in ecology and the geosciences. In many cases water has to be extracted directly from a matrix such as soil or plant tissue before isotopes can be analyzed by mass spectrometry. Currently, the most widely used technique for water is cryogenic vacuum extraction. We present a simple and inexpensive modification of this method and document tests conducted with soils of various grain size and tree core replicates taken on four occasions during 2010. The accuracies for sandy soils are between 0.4‰ and 3‰ over a range of 21‰ and 165‰ for δ(18)O and δ(2)H, respectively. Spiking tests with water of known isotope composition were conducted with soil and tree core samples; they indicate reliable precision after an extraction time of 15 min for sandy soils. For clayey soils and tree cores, the deviations were up to 0.63‰ and 4.7‰ for δ(18)O and δ(2)H, respectively. This indicates either that the extraction time should be extended or that mechanisms different from Rayleigh fractionation play a role. The modified protocol allows a fast and reliable extraction of large numbers of water samples from soil and plant material in preparation for stable isotope analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.