The aim of this study was to investigate the effect of intra-limb variability on the calculation of asymmetry with the purpose of informing future analyses. Asymmetry has previously been quantified for discrete kinematic and kinetic variables; however, intra-limb variability has not been routinely included in these analyses. Synchronized lower-limb kinematic and kinetic data were collected from eight trained athletes (age 22 ± 5 years, mass 74.0 ± 8.7 kg, stature 1.79 ± 0.07 m) during maximal velocity sprint running. Asymmetry was quantified using a modified version of the symmetry angle for selected kinematic and kinetic variables. Significant differences (P < 0.05) between left and right values for each variable were calculated to indicate intra-limb variability relative to between-limb differences. Significant asymmetry was present in only 39% of kinematic variables and 23% of kinetic variables analysed. Large kinetic asymmetry values (>90%) were calculated for some athletes that were not significant, due to large intra-limb variability. Variables that displayed significant asymmetry were athlete-specific. Findings highlight the potential for misleading results if intra-limb variability is not included in asymmetry analyses. The exclusion of asymmetry scores for variables not displaying significant asymmetry will be useful when calculating overall asymmetry for different participants and could be applied to future running gait analyses.
The aim of this study was to examine lower limb joint kinetics during the block and first stance phases in athletic sprinting. Ten male sprinters (100 m PB, 10.50 ± 0.27 s) performed maximal sprint starts from blocks. External force (1000 Hz) and three-dimensional kinematics (250 Hz) were recorded in both the block (utilising instrumented starting blocks) and subsequent first stance phases. Ankle, knee and hip resultant joint moment, power and work were calculated at the rear and front leg during the block phase and during first stance using inverse dynamics. Significantly (P < 0.05) greater peak moment, power and work were evident at the knee joint in the front block and during stance compared with the rear block. Ankle joint kinetic data significantly increased during stance compared with the front and rear block. The hip joint dominated leg extensor energy generation in the block phase (rear leg, 61 ± 10%; front leg, 64 ± 8%) but significantly reduced during stance (32 ± 9%), where the ankle contributed most (42 ± 6%). The current study provides novel insight into sprint start biomechanics and the contribution of the lower limb joints towards leg extensor energy generation.
The aim of this study was to empirically examine the interaction of athlete-specific kinematic kinetic and strength asymmetry in sprint running. Bilateral ground reaction force and kinematic data were collected during maximal velocity (mean = 9.05 m/s) sprinting for eight athletes. Bilateral ground reaction force data were also collected while the same athletes performed maximal effort squat jumps. Using novel composite asymmetry scores, interactions between kinematic and kinetic asymmetry were compared for the group of sprinters. Asymmetry was greater for kinematic variables than step characteristics, with largest respective values of 6.68% and 1.68%. Kinetic variables contained the largest asymmetry values, peaking at >90%. Asymmetry was present in all kinematic and kinetic variables analyzed during sprint trials. However, individual athlete asymmetry profiles were reported for sprint and jump trials. Athletes' sprint performance was not related to their overall asymmetry. Positive relationships were found between asymmetry in ankle work during sprint running and peak vertical force (r = 0.895) and power (r = 0.761) during jump trials, suggesting that the ankle joint may be key in regulating asymmetry in sprinting and highlighting the individual nature of asymmetry. The individual athlete asymmetry profiles and lack of relationship between asymmetry of limb strength and sprint performance suggest that athletes are not "limb dominant" and that strength imbalances are joint and task specific. Compensatory kinetic mechanisms may serve to reduce the effects of strength or biological asymmetry on the performance outcome of step velocity.
BackgroundFunctional electrical stimulation (FES) during repetitive practice of everyday tasks can facilitate recovery of upper limb function following stroke. Reduction in impairment is strongly associated with how closely FES assists performance, with advanced iterative learning control (ILC) technology providing precise upper-limb assistance. The aim of this study is to investigate the feasibility of extending ILC technology to control FES of three muscle groups in the upper limb to facilitate functional motor recovery post-stroke.MethodsFive stroke participants with established hemiplegia undertook eighteen intervention sessions, each of one hour duration. During each session FES was applied to the anterior deltoid, triceps, and wrist/finger extensors to assist performance of functional tasks with real-objects, including closing a drawer and pressing a light switch. Advanced model-based ILC controllers used kinematic data from previous attempts at each task to update the FES applied to each muscle on the subsequent trial. This produced stimulation profiles that facilitated accurate completion of each task while encouraging voluntary effort by the participant. Kinematic data were collected using a Microsoft Kinect, and mechanical arm support was provided by a SaeboMAS. Participants completed Fugl-Meyer and Action Research Arm Test clinical assessments pre- and post-intervention, as well as FES-unassisted tasks during each intervention session.ResultsFugl-Meyer and Action Research Arm Test scores both significantly improved from pre- to post-intervention by 4.4 points. Improvements were also found in FES-unassisted performance, and the amount of arm support required to successfully perform the tasks was reduced.ConclusionsThis feasibility study indicates that technology comprising low-cost hardware fused with advanced FES controllers accurately assists upper limb movement and may reduce upper limb impairments following stroke.
Gait asymmetry analyses are beneficial from clinical, coaching and technology perspectives. Quantifying overall athlete asymmetry would be useful in allowing comparisons between participants, or between asymmetry and other factors, such as sprint running performance. The aim of this study was to develop composite kinematic and kinetic asymmetry scores to quantify athlete asymmetry during maximal speed sprint running. Eight male sprint trained athletes (age 22±5 years, mass 74.0±8.7 kg and stature 1.79±0.07 m) participated in this study. Synchronised sagittal plane kinematic and kinetic data were collected via a CODA motion analysis system, synchronised to two Kistler force plates. Bilateral, lower limb data were collected during the maximal velocity phase of sprint running (velocity=9.05±0.37 ms(-1)). Kinematic and kinetic composite asymmetry scores were developed using the previously established symmetry angle for discrete variables associated with successful sprint performance and comparisons of continuous joint power data. Unlike previous studies quantifying gait asymmetry, the scores incorporated intra-limb variability by excluding variables from the composite scores that did not display significantly larger (p<0.05) asymmetry than intra-limb variability. The variables that contributed to the composite scores and the magnitude of asymmetry observed for each measure varied on an individual participant basis. The new composite scores indicated the inter-participant differences that exist in asymmetry during sprint running and may serve to allow comparisons between overall athlete asymmetry with other important factors such as performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.