The development of ESR methods that measure long-range distance distributions has advanced biophysical research. However, the spin labels commonly employed are highly flexible, which leads to ambiguity in relating ESR measurements to protein-backbone structure. Herein we present the double-histidine (dHis) Cu2+-binding motif as a rigid spin probe for double electron–electron resonance (DEER) distance measurements. The spin label is assembled in situ from natural amino acid residues and a metal salt, requires no postexpression synthetic modification, and provides distance distributions that are dramatically narrower than those found with the commonly used protein spin label. Simple molecular modeling based on an X-ray crystal structure of an unlabeled protein led to a predicted most probable distance within 0.5 of the experimental value. Cu2+ DEER with the dHis motif shows great promise for the resolution of precise, unambiguous distance constraints that relate directly to protein-backbone structure and flexibility.
Cu based distance measurements using the double-histidine (dHis) motif by pulsed ESR present an attractive strategy to obtain precise, narrow distance distributions that can be easily related to protein backbone structure (Cunningham et al., Angew. Chem., Int. Ed., 2015, 54, 633). The Cu-ion is introduced as a complex with the iminodiacetic acid (IDA) chelating agent, which enhances binding selectivity to the two histidine residues that are site-selectively placed on the protein through mutagenesis. However, initial results of this method produced weak dipolar modulations. To enhance applicability of the double histidine motif using IDA, we perform a systematic examination of the possible causes of these weak dipolar modulations. We examine the efficiency of the Cu-ion to form the Cu-IDA complex in solution. In addition, we analyze the selectivity of Cu-IDA binding to dHis sites at both α-helical and β-strand environments. Our results indicate that the dHis motif on the β-sheet sites have high affinity towards Cu-IDA while the dHis sites on α-helices show poor affinity for the metal-ion complex. We are able to use our new findings to optimize conditions to maximize dHis loading while minimizing both free Cu and unbound Cu-IDA complex in solution, allowing us to double the sensitivity of the Double Electron-Electron Resonance (DEER) experiment. Finally, we illustrate how Cu-based CW-ESR and DEER can be combined to obtain information on populations of different Cu-complexes in solution.
X-ray crystallography has been a useful tool in the development of site-directed spin labeling by resolving rotamers of the nitroxide spin-label side chain in a variety of α-helical environments. In this work, the crystal structure of a doubly spin-labeled N8C/K28C mutant of the B1 immunoglobulin-binding domain of protein G (GB1) was solved. The double mutant formed a domain-swapped dimer under crystallization conditions. Two rotameric states of the spin-label were resolved at the solvent-exposed α-helical site, at residue 28; these are in good agreement with rotamers previously reported for helical structures. The second site, at residue 8 on an interior β-strand, shows the presence of three distinct solvent-exposed side-chain rotamers. One of these rotamers is rarely observed within crystal structures of R1 sites and suggests that the H(α) and S(δ) hydrogen bond that is common to α-helical sites is absent at this interior β-strand residue. Variable temperature continuous wave (CW) experiments of the β-strand site showed two distinct components that were correlated to the rotameric states observed in crystallography. Interestingly, the CW data at room temperature could be fit without the use of an order parameter, which is consistent with the lack of the H(α) and S(δ) interaction. Additionally, double electron electron resonance (DEER) spectroscopy was performed on the GB1 double mutant in its monomeric form and yielded a most probable interspin distance of 25 ± 1 Å. In order to evaluate the accuracy of the measured DEER distance, the rotamers observed in the crystal structure of the domain-swapped GB1 dimer were modeled into a high-resolution structure of the wild type monomeric GB1. The distances generated in the resulting GB1 structural models match the most probable DEER distance within ~2 Å. The results are interesting as they indicate by direct experimental measurement that the rotameric states of R1 found in this crystal provide a very close match to the most probable distance measured by DEER.
The development of ESR methods that measure long-range distance distributions has advanced biophysical research. However, the spin labels commonly employed are highly flexible, which leads to ambiguity in relating ESR measurements to protein-backbone structure. Herein we present the double-histidine (dHis) Cu 2+ -binding motif as a rigid spin probe for double electron-electron resonance (DEER) distance measurements. The spin label is assembled in situ from natural amino acid residues and a metal salt, requires no postexpression synthetic modification, and provides distance distributions that are dramatically narrower than those found with the commonly used protein spin label. Simple molecular modeling based on an X-ray crystal structure of an unlabeled protein led to a predicted most probable distance within 0.5 of the experimental value. Cu 2+ DEER with the dHis motif shows great promise for the resolution of precise, unambiguous distance constraints that relate directly to protein-backbone structure and flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.