Results of an experimental study of reinforced concrete panels under blast detonations are presented. The primary purpose of the tests was to collect data for validating simulation methods for blast loads. The scaled distance ranged from 0.41 m/(kg) 1/3 to 0.57 m/(kg) 1/3 and hence the tests are close-in detonations. Four types of 1.2 m square panels were subjected to blast to investigate the performance of new walls: reinforced concrete (RC) panels; fiber reinforced concrete (FRC) panels without additional reinforcement; FRC panels reinforced with steel bars; and RC panels reinforced with glass fiber reinforced polymer (GFRP) bars. Another RC panel type was built which was retrofitted with external GFRP laminates on both faces. The performance of the panels is classified into three categories as medium protection, very low protection, and protection below antiterrorism standards. FRC panels reinforced with steel bars had the best performance for new construction. Panels that survived the blast detonation without sustaining a breach were tested under monotonic static loads to determine their static post-blast load resistance.
The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.