The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
[1] Accurate estimation of spatially distributed chlorophyll content (Chl) in crops is of great importance for regional and global studies of carbon balance and responses to fertilizer (e.g., nitrogen) application. In this paper a recently developed conceptual model was applied for remotely estimating Chl in maize and soybean canopies. We tuned the spectral regions to be included in the model, according to the optical characteristics of the crops studied, and showed that the developed technique allowed accurate estimation of total Chl in both crops, explaining more than 92% of Chl variation. This new technique shows great potential for remotely tracking the physiological status of crops, with contrasting canopy architectures, and their responses to environmental changes. Citation: Gitelson,
Leaf area index (LAI) is an important variable for climate modeling, estimates of primary production, agricultural yield forecasting, and many other diverse studies. Remote sensing provides a considerable potential for estimating LAI at local to regional and global scales. Several spectral vegetation indices have been proposed, but their capacity to estimate LAI is highly reduced at moderate‐to‐high LAI. In this paper, we propose a technique to estimate LAI and green leaf biomass remotely using reflectances in two spectral channels either in the green around 550 nm, or at the red edge near 700 nm, and in the NIR (beyond 750 nm). The technique was tested in agricultural fields under a maize canopy, and proved suitable for accurate estimation of LAI ranging from 0 to more than 6.
[1] Accurate estimation of spatially distributed CO 2 fluxes is of great importance for regional and global studies of carbon balance. We applied a recently developed technique for remote estimation of crop chlorophyll content to assess gross primary production (GPP). The technique is based on reflectance in two spectral channels: the near-infrared and either the green or the red-edge. We have found that in irrigated and rainfed crops (maize and soybean), midday GPP is closely related to total crop chlorophyll content. The technique provided accurate estimations of midday GPP in both crops under rainfed and irrigated conditions with root mean square error of GPP estimation of less than 0.3 mg CO 2 /m 2 s in maize (GPP ranged from 0 to 3.1 mg CO 2 /m 2 s) and less than 0.2 mg CO 2 /m 2 s in soybean (GPP ranged from 0 to 1.8 mg CO 2 /m 2 s). Validation using an independent data set for irrigated and rainfed maize showed robustness of the technique; RMSE of GPP prediction was less than 0.27 mg CO 2 /m 2 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.