Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare primary immunodeficiency disorder typically caused by homozygous AIRE mutations. It classically presents with chronic mucocutaneous candidiasis and autoimmunity that primarily targets endocrine tissues; hypoparathyroidism and adrenal insufficiency are most common. Developing any two of these classic triad manifestations establishes the diagnosis. Although widely recognized in Europe, where nonendocrine autoimmune manifestations are uncommon, APECED is less defined in patients from the Western Hemisphere. We enrolled 35 consecutive American APECED patients (33 from the US) in a prospective observational natural history study and systematically examined their genetic, clinical, autoantibody, and immunological characteristics. Most patients were compound heterozygous; the most common AIRE mutation was c.967_979del13. All but one patient had anti–IFN-ω autoantibodies, including 4 of 5 patients without biallelic AIRE mutations. Urticarial eruption, hepatitis, gastritis, intestinal dysfunction, pneumonitis, and Sjögren’s-like syndrome, uncommon entities in European APECED cohorts, affected 40%–80% of American cases. Development of a classic diagnostic dyad was delayed at mean 7.38 years. Eighty percent of patients developed a median of 3 non-triad manifestations before a diagnostic dyad. Only 20% of patients had their first two manifestations among the classic triad. Urticarial eruption, intestinal dysfunction, and enamel hypoplasia were prominent among early manifestations. Patients exhibited expanded peripheral CD4+ T cells and CD21loCD38lo B lymphocytes. In summary, American APECED patients develop a diverse syndrome, with dramatic enrichment in organ-specific nonendocrine manifestations starting early in life, compared with European patients. Incorporation of these new manifestations into American diagnostic criteria would accelerate diagnosis by approximately 4 years and potentially prevent life-threatening endocrine complications.
SummaryImmuno-surveillance networks operating at barrier sites are tuned by local tissue cues to ensure effective immunity. Site-specific commensal bacteria provide key signals ensuring host defense in the skin and gut. However, how the oral microbiome and tissue-specific signals balance immunity and regulation at the gingiva, a key oral barrier, remains minimally explored. In contrast to the skin and gut, we demonstrate that gingiva-resident T helper 17 (Th17) cells developed via a commensal colonization-independent mechanism. Accumulation of Th17 cells at the gingiva was driven in response to the physiological barrier damage that occurs during mastication. Physiological mechanical damage, via induction of interleukin 6 (IL-6) from epithelial cells, tailored effector T cell function, promoting increases in gingival Th17 cell numbers. These data highlight that diverse tissue-specific mechanisms govern education of Th17 cell responses and demonstrate that mechanical damage helps define the immune tone of this important oral barrier.
Summary Previous studies have suggested that neutrophils are required for resistance during infection with multiple pathogenic microorganisms. However, the depleting antibody used in those studies binds to both Ly6G and Ly6C (anti-Gr-1; clone RB6-8C5). This antibody has been shown to not only deplete neutrophils, but also monocytes, and a subset of CD8 T cells. Recently, an antibody against Ly6G has been characterized which specifically depletes neutrophils. In the present study, neutrophils are depleted using the antibody against Ly6G during infection with the intracellular bacterium, Listeria monocytogenes (LM). Our data show that neutrophil depleted mice are much less susceptible to infection than mice depleted with anti-Gr-1. Although neutrophils are required for clearance of LM, their importance is more pronounced in the liver and during a high-dose bacterial challenge. Furthermore, we demonstrate that protection mediated by neutrophils is due to production of TNF-α, but not IFN-γ. Additionally, neutrophils are not required for the recruitment of monocytes or the generation of adaptive T cell responses during LM infection. These studies highlight the importance of neutrophils during LM infection, and also indicate that depletion of neutrophils is less detrimental to the host than depletion of all Gr-1 expressing cell populations.
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a monogenic disorder caused by AIRE mutations, presents with several autoimmune diseases. Among these, endocrine organ failure is widely recognized, but the prevalence, immunopathogenesis, and treatment of non-endocrine manifestations such as pneumonitis remain poorly characterized. We enrolled 50 patients with APECED in a prospective observational study and comprehensively examined their clinical and radiographic findings, performed pulmonary function tests, and analyzed immunological characteristics in blood, bronchoalveolar lavage fluid, and endobronchial and lung biopsies. Pneumonitis was found in >40% of our patients, presented early in life, was misdiagnosed despite chronic respiratory symptoms and accompanying radiographic and pulmonary function abnormalities, and caused hypoxemic respiratory failure and death. Autoantibodies against BPIFB1 and KCNRG and the homozygous c.967_979del13 AIRE mutation are associated with pneumonitis development. APECED pneumonitis features compartmentalized immunopathology, with accumulation of activated neutrophils in the airways and lymphocytic infiltration in intraepithelial, submucosal, peribronchiolar, and interstitial areas. Beyond APECED, we extend these observations to lung disease seen in other conditions with secondary AIRE deficiency (thymoma and RAG deficiency). Aire-deficient mice had similar compartmentalized cellular immune responses in the airways and lung tissue, which was ameliorated by deficiency of T and B lymphocytes. Accordingly, T and B lymphocyte–directed immunomodulation controlled symptoms and radiographic abnormalities and improved pulmonary function in patients with APECED pneumonitis. Collectively, our findings unveil lung autoimmunity as a common, early, and unrecognized manifestation of APECED and provide insights into the immunopathogenesis and treatment of pulmonary autoimmunity associated with impaired central immune tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.