Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low‐lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to document the hydrology and a method to quantify the water budget of a first‐order forested watershed, WS80, located within the USDA Forest Service Santee Experimental Forest northeast of Charleston, South Carolina. Annual Rainfall for the 2003 and 2004 periods were 1,671 mm (300 mm above normal) and 962 mm (over 400 mm below normal), respectively. Runoff coefficients (outflow as a fraction of total rainfall) for the 2003 and 2004 periods were 0.47 and 0.08, respectively, indicating a wide variability of outflows as affected by antecedent conditions. A spreadsheet‐based Thornthwaite monthly water balance model was tested on WS80 using three different potential evapotranspiration estimators [Hamon, Thornthwaite, and Penman‐Monteith (P‐M)]. The Hamon and P‐M‐based methods performed reasonably well with average absolute monthly deviations of 12.6 and 13.9 mm, respectively, between the measured and predicted outflows. Estimated closure errors were all within 9% for the 2003, 2004, and seasonal water budgets. These results may have implications on forest management practices and provide necessary baseline or reference information for Atlantic Coastal Plain watersheds.
Abstract:This paper describes how climate influences the hydrology of an ephemeral depressional wetland. Surface water and groundwater elevation data were collected for 7 years in a Coastal Plain watershed in South Carolina USA containing depressional wetlands, known as Carolina bays. Rainfall and temperature data were compared with water-table well and piezometer data in and around one wetland. Using these data a conceptual model was created that describes the hydrology of the system under wet, dry, and drought conditions. The data suggest this wetland operates as a focal point for groundwater recharge under most climate conditions. During years of below-normal to normal rainfall the hydraulic gradient indicated the potential for groundwater recharge from the depression, whereas during years of above-normal rainfall, the hydraulic gradient between the adjacent upland, the wetland margin, and the wetland centre showed the potential for groundwater discharge into the wetland. Using high-resolution water-level measurements, this groundwater discharge condition was found to hold true even during individual rainfall events, especially under wet antecedent soil conditions. The dynamic nature of the hydrology in this Carolina bay clearly indicates it is not an isolated system as previously believed, and our groundwater data expand upon previous hydrologic investigations at similar sites which do not account for the role of groundwater in estimating the water budget of such systems.
Abstract:Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964)(1965)(1966)(1967)(1968)(1969)(1970)(1971)(1972)(1973)(1974)(1975)(1976) of rainfall and stream flow data for a low-gradient, third-order forested watershed. It was hypothesized that runoff-rainfall ratios (R/P) are smaller during the dry periods (summer and fall) and greater during the wet periods (winter and spring). We found a large seasonal variability in event R/P potentially due to differences in forest evapotranspiration that affected seasonal soil moisture conditions. Linear regression analysis results revealed a significant relationship between rainfall and runoff for wet (r 2 D 0Ð68; p < 0Ð01) and dry (r 2 D 0Ð19; p D 0Ð02) periods. Rainfall-runoff relationships based on a 5-day antecedent precipitation index (API) showed significant (r 2 D 0Ð39; p < 0Ð01) correspondence for wet but not (r 2 D 0Ð02; p D 0Ð56) for dry conditions. The same was true for rainfall-runoff relationships based on 30-day API (r 2 D 0Ð39; p < 0Ð01 for wet and r 2 D 0Ð00; p D 0Ð79 for dry). Stepwise regression analyses suggested that runoff was controlled mainly by rainfall amount and initial soil moisture conditions as represented by the initial flow rate of a storm event. Mean event R/P were higher for the wet period (R/P D 0Ð33), and the wet antecedent soil moisture condition based on 5-day (R/P D 0Ð25) and 30-day (R/P D 0Ð26) prior API than those for the dry period conditions. This study suggests that soil water status, i.e. antecedent soil moisture and groundwater table level, is important besides the rainfall to seasonal runoff generation in the coastal plain region with shallow soil argillic horizons.
Intensive plantation forestry will be increasingly important in the next 50 yr to meet the high demand for domestic wood in the United States. However, forest management practices can substantially influence downstream water quality and ecology. This study analyses, the effect of fertilization on effluent water quality of a low gradient drained coastal pine plantation in Carteret County, North Carolina using a paired watershed approach. The plantation consists of three watersheds, two mature (31-yr) and one young (8-yr) (age at treatment). One of the mature watersheds was commercially thinned in 2002. The mature unthinned watershed was designated as the control. The young and mature-thinned watersheds were fertilized at different rates with Arborite (Encee Chemical Sales, Inc., Bridgeton, NC), and boron. The outflow rates and nutrient concentrations in water drained from each of the watersheds were measured. Nutrient concentrations and loadings were analyzed using general linear models (GLM). Three large storm events occurred within 47 d of fertilization, which provided a worst case scenario for nutrient export from these watersheds to the receiving surface waters. Results showed that average nutrient concentrations soon after fertilization were significantly (alpha = 0.05) higher on both treatment watersheds than during any other period during the study. This increase in nutrient export was short lived and nutrient concentrations and loadings were back to prefertilization levels as soon as 3 mo after fertilization. Additionally, the mature-thinned watershed presented higher average nutrient concentrations and loadings when compared to the young watershed, which received a reduced fertilizer rate than the mature-thinned watershed.
Abstract. The objective of this research was to investigate the effects of matrix diffusion on solute transport in fractured volcanic tuff. Two tuff cores were studied, one with a matrix porosity of 0.27 and the other with a porosity of 0.14. The matrix permeabilities of the cores were 4.7 x 10 -•5 and 7.8 x 10 -•9 m 2, 5 and 9 orders of magnitude less than the respective fracture permeabilities. This suggested that the cores could be modeled as dualporosity systems with no flow in the matrix but significant solute storage capacity. Two types of tracer tests were conducted in each fractured core: (1) iodide was injected in separate experiments at different flow rates and (2) two tracers of different matrix diffusion coefficients (bromide and pentafluorobenzoate (PFBA)) were injected in another test. A difference in the maximum concentrations of the solutes and the extended tailing of the breakthrough curves were assumed to be indicative of diffusive mass transfer between the fracture and the porous matrix of the cores. Interpreting the results from both methods allowed the identification of matrix diffusion and dispersion effects within the fracture by simultaneously fitting the data sets (with known constraints) using a relatively simple conceptual model. Estimates of mass transfer coefficients for the fractured cores were also obtained. IntroductionBecause solute transport is controlled by both the physical nature of the flow system and the characteristics of the solutes (velocity, dispersivity, water saturation, sorption behavior, and diffusion coefficient), it is often difficult to determine the im- Separate samples of each core were used for matrix diffusion coefficient, porosity, and permeability measurements. These experiments provided independent estimates of the matrix diffusion coefficients of the different solutes used in the fractured core experiments.The dual-porosity conceptual model accurately described solute transport through the fractured cores and captured the importance of fracture/matrix interactions. The solute breakthrough curves follow a -1.5 slope in log space, which is probably due to diffusive mass transfer between the fracture and the surrounding porous matrix. However, the independent matrix diffusion coefficient measurements for Br-and PFBA in the same rock types were smaller than those calculated from 3547
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.