Cowpea (Vigna unguiculata L. Walp) is a warm-season legume with a genetically diverse gene-pool composed of wild and cultivated forms. Cowpea domestication involved considerable phenotypic changes from the wild progenitor, including reduction of pod shattering, increased organ size, and changes in flowering time. Little is known about the genetic basis underlying these changes. In this study, 215 recombinant inbred lines derived from a cross between a cultivated and a wild cowpea accession were used to evaluate nine domestication-related traits (pod shattering, peduncle length, flower color, days to flowering, 100-seed weight, pod length, leaf length, leaf width and seed number per pod). A high-density genetic map containing 17,739 single nucleotide polymorphisms was constructed and used to identify 16 quantitative trait loci (QTL) for these nine traits. Based on annotations of the cowpea reference genome, genes within these regions are reported. Four regions with clusters of QTL were identified, including one on chromosome 8 related to increased organ size. This study provides new knowledge of the genomic regions controlling domestication-related traits in cowpea as well as candidate genes underlying those QTL. This information can help to exploit wild relatives in cowpea breeding programs.
Seed coat color is an important part of consumer preferences for cowpea (Vigna unguiculata [L.] Walp). Color has been studied in numerous crop species and has often been linked to loci controlling the anthocyanin biosynthesis pathway. This study makes use of available resources, including mapping populations, a reference genome, and a high-density single nucleotide polymorphism genotyping platform, to map the black seed coat and purple pod tip color traits, with the gene symbol Bl, in cowpea. Several gene models encoding MYB domain protein 113 were identified as candidate genes. MYB domain proteins have been shown in other species to control expression of genes encoding enzymes for the final steps in the anthocyanin biosynthesis pathway. PCR analysis indicated that a presence/absence variation of one or more MYB113 genes may control the presence or absence of black pigment. A PCR marker has been developed for the MYB113 gene Vigun05g039500, a candidate gene for black seed coat color in cowpea.
Cowpea (Vigna unguiculata [L.] Walp.) was originally domesticated in sub‐Saharan Africa but is now cultivated on every continent except Antarctica. Utilizing archeological, textual, and genetic resources, the spread of cultivated cowpea has been reconstructed. Cowpea was domesticated in Africa, likely in both West and East Africa, before 2500 BCE and by 400 BCE was long established in all the modern major production regions of the Old World, including sub‐Saharan Africa, the Mediterranean Basin, India, and Southeast Asia. Further spread occurred as part of the Columbian Exchange, which brought African germplasm to the Caribbean, the southeastern United States, and South America and Mediterranean germplasm to Cuba, the southwestern United States, and Northwest Mexico.
Cowpea, Vigna unguiculata L. Walp., is a diploid warm-season legume of critical importance as both food and fodder in sub-Saharan Africa. This species is also grown in Northern Africa, Europe, Latin America, North America, and East to Southeast Asia. To capture the genomic diversity of domesticates of this important legume, de novo genome assemblies were produced for representatives of six subpopulations of cultivated cowpea identified previously from genotyping of several hundred diverse accessions. In the most complete assembly (IT97K-499-35), 26,026 core and 4963 noncore genes were identified, with 35,436 pan genes when considering all seven accessions. GO terms associated with response to stress and defense response were
Pod shattering, which causes the explosive release of the seeds from the pod, is one of the main sources of yield losses in cowpea in arid and semi-arid areas. Reduction of shattering has therefore been a primary target for selection during the domestication and improvement of cowpea, among other species. Using a mini-core diversity panel of 368 cowpea accessions, four regions with a statistically significant association with pod shattering were identified. Two genes (Vigun03g321100 and Vigun11g100600), involved in cell wall biosynthesis, were identified as strong candidates for pod shattering. Microscopical analysis was conducted on a subset of accessions representing the full spectrum of shattering phenotypes. This analysis indicated that the extent of wall fiber deposition was highly correlated with shattering. The results from this study also confirm that pod shattering in cowpea is exacerbated by arid environmental conditions. Finally, using a subset of West African landraces, patterns of historical selection for shattering resistance related to precipitation in the environment of origin were identified. Together, these results shed light on sources of resistance to pod shattering, which will, in turn, improve climate resilience of a major global nutritional staple.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.