Methamphetamine intoxication causes long-lasting damage to dopamine nerve endings in the striatum. The mechanisms underlying this neurotoxicity are not known but oxidative stress has been implicated. Microglia are the major antigen-presenting cells in brain and when activated, they secrete an array of factors that cause neuronal damage. Surprisingly, very little work has been directed at the study of microglial activation as part of the methamphetamine neurotoxic cascade. We report here that methamphetamine activates microglia in a dose-related manner and along a time course that is coincident with dopamine nerve ending damage. Prevention of methamphetamine toxicity by maintaining treated mice at low ambient temperature prevents drug-induced microglial activation. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), which damages dopamine nerve endings and cell bodies, causes extensive microglial activation in striatum as well as in the substantia nigra. In contrast, methamphetamine causes neither microglial activation in the substantia nigra nor dopamine cell body damage. Dopamine transporter antagonists (cocaine, WIN 35,428 [(Ϫ)-2--carbomethoxy-3--(4-fluorophenyl)tropane 1,5-naphthalenedisulfonate], and nomifensine), selective D1 (SKF 82958 [(Ϯ)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide]), D2 (quinpirole), or mixed D1/D2 receptor agonists (apomorphine) do not mimic the effect of methamphetamine on microglia. Hyperthermia, a prominent and dangerous clinical response to methamphetamine intoxication, was also ruled out as the cause of microglial activation. Together, these data suggest that microglial activation represents an early step in methamphetamine-induced neurotoxicity. Other neurochemical effects resulting from methamphetamine-induced overflow of DA into the synapse, but which are not neurotoxic, do not play a role in this response.
Approximately 40% of marathon runners experience a transient rise in serum creatinine that meets criteria of AKI with a parallel elevation of cystatin C, and supportive elevations of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in the urine. All biomarker elevations resolved by 24 h. These data suggest that AKI with a transient and minor change in renal filtration function occurs with the stress of marathon running. The impact of repetitive episodes of AKI with long-distance running is unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.