The article reviews ruminant ecology and evolution and shows insights they offer into livestock research. The first ruminants evolved about 50 million years ago and were small (<5 kg) forest-dwelling omnivores. Today there are almost 200 living ruminant species in 6 families. Wild ruminants number about 75 million, range from about 2 to more than 800 kg, and generally prefer at least some browse in their diets. Nine species have been domesticated within the last 10,000 yr. Their combined population currently numbers 3.6 billion. In contrast to wild ruminants, domestic species naturally prefer at least some grass in their diets, are of large body weight (BW; roughly from 35 to 800 kg), and, excepting reindeer, belong to one family (Bovidae). Wild ruminants thus have a comparatively rich ecological diversity and long evolutionary history. Studying them gives a broad perspective that can augment and challenge the status quo of ruminant research and production. Allometric equations, often used in ecology, relate BW to physiological measurements from several species (typically both wild and domestic). They are chiefly used to predict or explain values of physiological parameters from BW alone. Results of one such equation suggest that artificial selection has increased peak milk energy yield by 250% over its natural level. Voluntary feed intake is proportional to BW(0.9) across wild and domestic ruminant species. This proportionality suggests that physical and metabolic factors regulate intake simultaneously, not mutually exclusively as often presumed. Studying the omasum in wild species suggests it functions primarily in particle separation and retention and only secondarily in absorption and other roles. Studies on the African Serengeti show that multiple species, when grazed together, feed such that they use grasslands more completely. They support the use of mixed-species grazing systems in production agriculture. When under metabolic stress, wild species will not rebreed, but rather will extend lactation (to nourish their current offspring). This bolsters the suggestion that lactation length be extended in dairy operations. Cooperation between animal scientists and ecologists could generate more valuable insight.
Rumen microbes produce cellular protein inefficiently partly because they do not direct all ATP toward growth. They direct some ATP toward maintenance functions, as long-recognized, but they also direct ATP toward reserve carbohydrate synthesis and energy spilling (futile cycles that dissipate heat). Rumen microbes expend ATP by vacillating between (1) accumulation of reserve carbohydrate after feeding (during carbohydrate excess) and (2) mobilization of that carbohydrate thereafter (during carbohydrate limitation). Protozoa account for most accumulation of reserve carbohydrate, and in competition experiments, protozoa accumulated nearly 35-fold more reserve carbohydrate than bacteria. Some pure cultures of bacteria spill energy, but only recently have mixed rumen communities been recognized as capable of the same. When these communities were dosed glucose in vitro, energy spilling could account for nearly 40% of heat production. We suspect that cycling of glycogen (a major reserve carbohydrate) is a major mechanism of spilling; such cycling has already been observed in single-species cultures of protozoa and bacteria. Interconversions of short-chain fatty acids (SCFA) may also expend ATP and depress efficiency of microbial protein production. These interconversions may involve extensive cycling of intermediates, such as cycling of acetate during butyrate production in certain butyrivibrios. We speculate this cycling may expend ATP directly or indirectly. By further quantifying the impact of reserve carbohydrate accumulation, energy spilling, and SCFA interconversions on growth efficiency, we can improve prediction of microbial protein production and guide efforts to improve efficiency of microbial protein production in the rumen.
From a genomic analysis of rumen butyrivibrios (Butyrivibrio and Pseudobutyrivibrio sp.), we have re-evaluated the contribution of electron transport phosphorylation (ETP) to ATP formation in this group. This group is unique in that most (76%) genomes were predicted to possess genes for both Ech and Rnf transmembrane ion pumps. These pumps act in concert with the NifJ and Bcd-Etf to form a electrochemical potential (ΔμH+ and ΔμNa+), which drives ATP synthesis by ETP. Of the 62 total butyrivibrio genomes currently available from the Hungate 1000 project, all 62 were predicted to possess NifJ, which reduces oxidized ferredoxin (Fdox) during pyruvate conversion to acetyl-CoA. All 62 possessed all subunits of Bcd-Etf, which reduces Fdox and oxidizes reduced NAD during crotonyl-CoA reduction. Additionally, 61 genomes possessed all subunits of the Rnf, which generates ΔμH+ or ΔμNa+ from oxidation of reduced Fd (Fdred) and reduction of oxidized NAD. Further, 47 genomes possessed all six subunits of the Ech, which generates ΔμH+ from oxidation of Fdred. For glucose fermentation to butyrate and H2, the electrochemical potential established should drive synthesis of ∼1.5 ATP by the F0F1-ATP synthase (possessed by all 62 genomes). The total yield is ∼4.5 ATP/glucose after accounting for three ATP formed by classic substrate-level phosphorylation, and it is one the highest yields for any glucose fermentation. The yield was the same when unsaturated fatty acid bonds, not H+, served as the electron acceptor (as during biohydrogenation). Possession of both Ech and Rnf had been previously documented in only a few sulfate-reducers, was rare in other rumen prokaryotic genomes in our analysis, and may confer an energetic advantage to rumen butyrivibrios. This unique energy conservation system might enhance the butyrivibrios’ ability to overcome growth inhibition by unsaturated fatty acids, as postulated herein.
This study was conducted to examine effects of the dose and viability of supplemental Saccharomyces cerevisiae on the ruminal fermentation and bacteria population and the performance of lactating dairy cows. Four ruminally cannulated lactating cows averaging 284±18d in milk were assigned to 4 treatments arranged in a 4×4 Latin square design with four 21-d periods. Cows were fed a total mixed ration containing 41.7% corn silage, 12.1% brewer's grains, and 46.2% concentrate on a dry matter basis. The diet was supplemented with no yeast (control) or with a low dose of live yeast (5.7×10 cfu/cow per day; LLY), a high dose of live yeast (6.0×10 cfu/cow per day; HLY), or a high dose of killed yeast (6.0×10 cfu/cow per day; HDY). Microbial diversity was examined by high-throughput Illumina MiSeq sequencing (Illumina Inc., San Diego, CA) of the V4 region of the 16S rRNA gene. The relative abundance of select ruminal bacteria was also quantified by quantitative PCR (qPCR). Adding LLY to the diet increased the relative abundance of some ruminal cellulolytic bacteria (Ruminococcus and Fibrobacter succinogenes) and amylolytic bacteria (Ruminobacter, Bifidobacterium, and Selenomonas ruminantium). Adding live instead of killed yeast increased the relative abundance of Ruminococcus and F. succinogenes; adding HDY increased the relative abundance of Ruminobacter, Bifidobacterium, Streptococcus bovis, and Selenomonas ruminantium. The most dominant (≥1% of total sequences) bacteria that responded to LLY addition whose functions are among the least understood in relation to the mode of action of yeast include Paraprevotellaceae, CF231, Treponema, and Lachnospiraceae. Future studies should aim to speciate, culture, and examine the function of these bacteria to better understand their roles in the mode of action of yeast. A relatively precise relationship was detected between the relative abundance of F. succinogenes (R=0.67) from qPCR and MiSeq sequencing, but weak relationships were detected for Megasphaera elsdenii, Ruminococcus flavefaciens, and S. ruminantium (R≤0.19).
Bacteria have been thought to follow only a few well-recognized biochemical pathways when fermenting glucose or other hexoses. These pathways have been chiseled in the stone of textbooks for decades, with most sources rendering them as they appear in the classic 1986 text by Gottschalk. Still, it is unclear how broadly these pathways apply, given that they were established and delineated biochemically with only a few model organisms. Here, we show that well-recognized pathways often cannot explain fermentation products formed by bacteria. In the most extensive analysis of its kind, we reconstructed pathways for glucose fermentation from genomes of 48 species and subspecies of bacteria from one environment (the rumen). In total, 44% of these bacteria had atypical pathways, including several that are completely unprecedented for bacteria or any organism. In detail, 8% of bacteria had an atypical pathway for acetate formation; 21% of bacteria had an atypical pathway for propionate or succinate formation; 6% of bacteria had an atypical pathway for butyrate formation and 33% of bacteria had an atypical or incomplete Embden-Meyerhof-Parnas pathway. This study shows that reconstruction of metabolic pathways - a common goal of omics studies - could be incorrect if well-recognized pathways are used for reference. Furthermore, it calls for renewed efforts to delineate fermentation pathways biochemically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.