Aim Investigate whether acute workload (1 week total distance) and chronic workload (4-week average acute workload) predict injury in elite rugby league players. Methods Data were collected from 53 elite players over two rugby league seasons. The 'acute:chronic workload ratio' was calculated by dividing acute workload by chronic workload. A value of greater than 1 represented an acute workload greater than chronic workload. All workload data were classified into discrete ranges by z-scores. Results Compared with all other ratios, a very-high acute:chronic workload ratio (≥2.11) demonstrated the greatest risk of injury in the current week (16.7% injury risk) and subsequent week (11.8% injury risk). High chronic workload (>16 095 m) combined with a veryhigh 2-week average acute:chronic workload ratio (≥1.54) was associated with the greatest risk of injury (28.6% injury risk). High chronic workload combined with a moderate workload ratio (1.02-1.18) had a smaller risk of injury than low chronic workload combined with several workload ratios (relative risk range from 0.3 to 0.7×/÷1.4 to 4.4; likelihood range=88-94%, likely). Considering acute and chronic workloads in isolation (ie, not as ratios) did not consistently predict injury risk. Conclusions Higher workloads can have either positive or negative influences on injury risk in elite rugby league players. Specifically, compared with players who have a low chronic workload, players with a high chronic workload are more resistant to injury with moderate-low through moderate-high (0.85-1.35) acute:chronic workload ratios and less resistant to injury when subjected to 'spikes' in acute workload, that is, very-high acute:chronic workload ratios ∼1.5.
While studies have investigated speed and change of direction speed in rugby league players, no study has investigated the reactive agility of these athletes. In addition, the relationship among speed, change of direction speed, and reactive agility within the specific context of rugby league has not been determined. With this in mind, the purpose of this study was to investigate a wide range of speed, change of direction speed, and reactive agility tests commonly used by rugby league coaches to determine which, if any tests discriminated higher and lesser skilled players, and to investigate the relationship among speed, change of direction speed, and reactive agility in these athletes. Forty-two rugby league players completed tests of speed (5 m, 10 m, and 20 m sprint), change of direction speed ('L' run, 505 test, and modified 505 test), and reactive agility. The validity of the tests to discriminate higher and lesser skilled competitors was evaluated by testing first grade (N = 12) and second grade (N = 30) players. First grade players had faster speed, and movement and decision times on the reactive agility test than second grade players. No significant differences were detected between first and second grade players for change of direction speed. While movement times on the reactive agility test were significantly related to 10 m and 20 m sprint times and change of direction speed, no significant relationships were detected among measures of decision time and response accuracy during the reactive agility test and measures of linear speed and change of direction speed. These findings question the validity of preplanned change of direction speed tests for discriminating higher and lesser skilled rugby league players, while also highlighting the contribution of perceptual skill to agility in these athletes.
The purpose of this investigation was to examine the potential strength, power, and anthropometric contributors to vertical jump performances that are considered specific to volleyball success: the spike jump (SPJ) and counter-movement vertical jump (CMVJ). To assess the relationship among strength, power, and anthropometric variables with CMVJ and SPJ, a correlation and regression analysis was performed. In addition, a comparison of strength, power, and anthropometric differences between the seven best subjects and the seven worst athletes on the CMVJ test and SPJ test was performed. When expressed as body mass relative measures, moderate correlations (0.53-0.65; p < or = 0.01) were observed between the 1RM measures and both relative CMVJ and relative SPJ. Very strong correlations were observed between relative (absolute height-standing reach height) depth jump performance and relative SPJ (0.85; p < or = 0.01) and relative CMVJ (0.93; p = 0.01). The single best regression model component for relative CMVJ was the relative depth jump performance, explaining 84% of performance. The single best predictor for relative SPJ was also the relative depth jump performance (72% of performance), with the three-component models of relative depth jump, relative CMVJ, spike jump contribution (percent difference between SPJ and CMVJ), and relative CMVJ, spike jump contribution, and peak force, accounting for 96% and 97%, respectively. The results of this study clearly demonstrate that in an elite population of volleyball players, stretch-shortening cycle performance and the ability to tolerate high stretch loads, as in the depth jump, is critical to performance in the jumps associated with volleyball performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.