Summary. The propagation and interaction in more than one space dimension of localized pulse solutions (so-called light bullets) to the sine-Gordon [SG] equation is studied both asymptotically and numerically. Similar solutions and their resemblance to solitons in integrable systems were observed numerically before in vector Maxwell systems. The simplicity of SG allows us to perform an asymptotic analysis of counterpropagating pulses, as well as a fully resolved computation over rectangular domains. Numerical experiments are carried out on single pulse propagation and on two pulse collision under different orientations. The particle nature, as known for solitons, persists in these two space dimensional solutions as long as the amplitudes of initial data range in a finite interval, similar to the conditions on the vector Maxwell systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.