The 68-residue IA 3 polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic ␣-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K i < 0.1 nM) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA 3 from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA 3 . The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained.
Yeast IA3 aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA3 to re‐design the specificity. The IA3 polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C‐terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild‐type and chimaeric polypeptides at its N‐terminus by an MK(H)7MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain‐in‐function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side‐chains, which were identified in the Pichia enzyme by modelling, may increase the local IA3 concentration and create an anchor that enables the N‐terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N‐terminal extension of each IA3 polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA3 polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.