Interdisciplinary diabetic foot surgery teams may significantly impact surgery type, with greater focus on proactive and preventive, rather than reactive and ablative, procedures. Although endovascular limb-sparing procedures have become increasingly applicable, open bypass remains critical to success.
Foot wounds are the most common diabetes-related cause of hospitalization and frequently result in amputation. Although generally diagnosed clinically based on signs and symptoms of inflammation, empirical antibiotic treatment should be based on tissue cultures until resolution of infection. Advances in molecular detection over the past decade, including rapid chromogenic agar and real-time polymerase chain reaction, have improved diagnostic capabilities. However, chronic wounds may host biofilm bacteria not adequately detected by current microbiological testing. Enhanced DNA testing is required to identify these pathogens as well as evolving and previously underdiagnosed bacteria. Two options, nucleic acid fluorescent in situ hybridization and rDNA sequencing, are on the horizon for clinical use. Wound biofilms also necessitate more complex clinical management including debridement, augmenting host defenses, suppression of biofilms, and wound closure. Adopting these advances in diagnosis and treatment may help with overall prognosis and reduce health care costs.
Diabetic foot disease frequently leads to substantial long-term complications, imposing a huge socioeconomic burden on available resources and health care systems. Peripheral neuropathy, repetitive trauma, and peripheral vascular disease are common underlying pathways that lead to skin breakdown, often setting the stage for limb-threatening infection. Individuals with diabetes presenting with foot infection warrant optimal surgical management to effect limb salvage and prevent amputation; aggressive short-term and meticulous long-term care plans are required. In addition, the initial surgical intervention or series of interventions must be coupled with appropriate systemic metabolic management as part of an integrated, multidisciplinary team. Such teams typically include multiple medical, surgical, and nursing specialties across a variety of public and private health care systems. This article presents a stepwise approach to the diagnosis and treatment of diabetic foot infections with special emphasis on the appropriate use of surgical interventions and includes the following key elements: incision, wound investigation, debridement, wound irrigation and lavage, and definitive wound closure.
Negative pressure wound therapy (NPWT) is frequently employed in the treatment of complex wounds. A variety of wound chemotherapeutic agents such as insulin, which acts as a growth factor, may prove helpful in treatment as well. We present a case report in which insulin was used as a chemotherapeutic agent in continuous-instillation NPWT. To our knowledge, this is the first report in the literature describing this method of delivery.
Autologous platelet-rich plasma (PRP) may enhance wound healing through the formation of a platelet plug that provides both hemostasis and the secretion of biologically active proteins, including growth factors such as platelet-derived growth factor, transforming growth factor (TGF)-β, TGF-β2, and epidermal growth factor. The release of these growth factors into the wound may create an environment more conducive to tissue repair and could accelerate postoperative wound healing. To our knowledge, there are no reports of combining the use of PRP with curative diabetic foot surgery. This article provides a summary of the literature regarding PRP and wound healing and presents a case of a 49-year-old man with diabetes and a three-month history of a deep, nonhealing plantar hallux wound in which PRP was combined with a first metatarsophalangeal joint arthroplasty. Through the use of the PRP and bioengineered tissue to supplement curative diabetic foot surgery, the patient healed uneventfully at seven weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.