This study was aimed to assess the age and sex specific burden and associated risk factors of NCDs in adult population of South-South Nigeria. It was a cross-sectional study conducted in Uyo Metropolis, in 2009/2010; with 2780 participants (1447 males and 1333 females) aged 18-60 years. Instruments of survey were: a semi-structured questionnaire, anthropometric and non anthropometric measures using standard procedures. The overall prevalence of NCDs was 32.8%.Disease specific prevalence was as follows: 25%, 14.4%, 12.7%, 20.1% and 10% for obesity, hypertension, diabetes mellitus, musculoskeletal disorders and respiratory disorders respectively.Males' vs females' prevalence were: 20.7% vs 29.5%; 12.6% vs 12.2%; 9.7% vs 16.0%; 14.0% vs 26.5% and 8.6% vs 7.6% for obesity, hypertension, diabetes mellitus, musculoskeletal disorders and respiratory disorders respectively. Risk factors with increase odds for NCDs were: age, area of residence, work stress, triglyceride levels and positive family history. Physical inactivity, high total cholesterol level, high general adiposity, high central adiposity and poor dietary habits were equally significantly associated. The high prevalence of NCDs in Nigeria was precipitated by modifiable and un-modifiable life style factors. Intervention programmes should focus on these factors to reverse the trend.
ObjectivesTo assess the respiratory health effect of city ambient air pollutants on transit and non-transit workers and compare such effects by transportation mode, occupational exposure and sociodemographic characteristics of participants.DesignCross-sectional, randomised survey.SettingA two primary healthcare centre survey in 2009/2010 in Uyo metropolis, South-South Nigeria.ParticipantsOf the 245 male participants recruited, 168 (50 taxi drivers, 60 motorcyclists and 58 civil servants) met the inclusion criteria. These include age 18–35 years, a male transit worker or civil servant who had worked within Uyo metropolis for at least a year prior to the study, and had no history of respiratory disorders/impairment or any other debilitating illness.Main outcome measureThe adjusted ORs for respiratory function impairment (force vital capacity (FVC) and/or FEV1<80% predicted or FEV1/FVC<70% predicted) using Global Initiative for Chronic Obstructive Lung Diseases (GOLD) and National Institute for Health and Clinical Excellence (NICE) criteria were calculated. In order to investigate specific occupation-dependent respiratory function impairment, a comparison was made between the ORs for respiratory impairment in the three occupations. Adjustments were made for some demographic variables such as age, BMI, area of residence, etc.ResultsExposure to ambient air pollution by occupation and transportation mode was independently associated with respiratory functions impairment and incident respiratory symptoms among participants. Motorcyclists had the highest effect, with adjusted OR 3.10, 95% CI 0.402 to 16.207 for FVC<80% predicted and OR 1.71, 95% CI 0.61 to 4.76 for FEV1/FVC<70% predicted using GOLD and NICE criteria. In addition, uneducated, currently smoking transit workers who had worked for more than 1 year, with three trips per day and more than 1 h transit time per trip were significantly associated with higher odds for respiratory function impairment at p<0.001, respectively.ConclusionsFindings of this study lend weights to the existing literature on the adverse respiratory health effect of ambient air pollution on city transit workers globally. The role of other confounders acting synergistically to cause a more deleterious effect is obvious. In all, the effect depends on the mode and duration of exposure.
We can’t stop breathing, but we can do something about the quality of air that we breathe. Clean fresh air is indispensable ingredient for a good life quality. Individuals poses the right towards expecting that the breathed air will not harm people. Thus, fighting air pollution will not only improve health outcomes, productivity, and well-being, it’s also essential toward reducing the emissions of greenhouse gas as well as fighting climate change. For examples, a third of the global population is at risk from unhealthy of ambient air pollutants concentrations, with the loss of approximately 6.4 million healthy-life-years attributed specifically to chronic exposure to ambient particulate matter. Expert panels have consistently rated air pollution as a greater health hazard than water pollution. Pollution of air is the leading source of unexplained and undiagnosed diseases, besides have remained associated with a variety of serious human health risks, and in fact, a threshold has not been established under which these pollutants exert no adverse effects. This study evaluates ambient air quality at major sawmill sites in Ilorin Metropolis, Kwara State, Nigeria. “Measurements of Air pollution were accurately carried out using direct reading, automatic in situ gas monitors; Hand held mobile multi-gas monitor with model AS8900 [Combustible (LEL), and Oxygen (O2)], BLATN with model BR – Smart Series air quality monitor (PM10, Formaldehyde) and air quality multimeter with model B SIDE EET100 (Dust (PM2.5), VOC, Temperature and Relative Humidity)”. The outcomes disclosed among others, the average concentrations of CO, O2 as well as other measured parameters for instance formaldehyde (HcHo) etc., they are also consistently low as well as within acceptable range in terms of National as well as Global monitoring standards for air quality indices. However, there are few exceptions for instance the average volatile organic compounds (VOCs) concentrations, PM2.5, PM10 as well as Combustible (LEL) respectively, which are higher when compared to National and Global standards. This high figure is due to pollutant amount existing in the sawmills air environment resulting from input of influents from activities of the sawmill. However, as a result, air pollution in the city of Ilorin is found to be increasingly polluted and are of major health concern because of their synergistic action. Due to the high evidences and values, it can lead to a remarkable rise in over-all figure of hospital visits/ patients’ admissions with acute respiratory illnesses as soon as air pollutants level remained high. Hence, there is the need for an aggressive control of ambient air pollution.
This current study was conducted on rainfall and air temperature data obtained from the archive of the HelioClim website to determine the relationship between the two parameters. The study aimed at the relationship between rainfall and air temperature. The data of thirty-four (34) years spanning from 1985 to 2019 was analyzed using Mann-Kendal statistics on the trend of the rainfall series while the normality of rainfall series was determined using Kolmogorov-Smirnov test across six southwest stations of Nigeria. The results revealed the highest mean rainfall in Akure (198.9 mm) while the least rainfall in Ado-Ekiti (163.4 mm). The maximum rainfall was in Abeokuta (865.8 mm) with Iwo having the highest disparity in rainfall (SD=148.8 mm) compared with other stations. The skewness in Abeokuta (Skewness = 0.9 mm) was higher compared with Ado-Ekiti, Akure, Ibadan, Ikeja and Iwo with skewness values of 0.7 mm, 0.4 mm, 0.7 mm, 0.6 mm and 0.7 mm, respectively. The maximum air temperature was recorded in Iwo (301.7 K) and the minimum air temperature in Ado-Ekiti (293.3 K). The skewness obtained in Akure (-0.2) and Ikeja (-0.3) was less than zero indicating that air temperature decreased more than it increased in these areas while in other stations, Abeokuta (0.01), Ado-Ekiti (0.22), Ibadan (0.02) and Iwo (0.24), the skewness was greater than zero meaning that air temperature increased more than it decreased in these stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.