Expression of the gene cpc-1 is required for cross-pathway-mediated regulation of amino acid-biosynthetic genes in Neurospora crassa. We have cloned cpc-1 and present an analysis of its structure and regulation. The cpc-1-encoded transcript contains three open reading frames, two of which are located in the 720-nucleotide leader segment preceding the cpc-1 coding region. The two leader open reading frames, if translated, would produce peptides 20 and 41 residues in length. The deduced amino acid sequence of the cpc-1 polypeptide, CPC1, contains segments similar to the DNA-binding and transcriptional activation domains of GCN4, the major cross-pathway regulatory protein of yeast. The structural and functional similarities of CPC1 and GCN4 proteins suggest that cpc-1 encodes the analogous transcriptional activator of N. crassa. Messenger RNA measurements indicate that cpc-1 is transcriptionally regulated in response to amino acid starvation. The segment of CPC1 similar to the DNA-binding domain of GCN4 also is similar to the DNA-binding domains of the avian sarcoma virus oncogene-encoded v-JUN protein and human c-JUN protein.
The nitrogen-15 spin-lattice relaxation time, T1, and the nuclear Overhauser enhancement (NOE) have been measured for intracellular glutamine, alanine, and arginine in intact Neurospora crassa mycelia to probe their various intracellular environments. The relaxations of 15N gamma of glutamine, 15N alpha of alanine, and 15N omega, omega ' of arginine in N. crassa were found, on the basis of their NOE values, to be predominantly the result of 15N-H dipolar relaxation. These relaxations are therefore related to the microviscosities of the various environments and associations of the respective molecules with other cellular components that act to increase the effective molecular sizes. For 15N gamma of glutamine in the cytoplasm, the intracellular T1 (4.1 s) was only slightly shorter than that in the culture medium (4.9 s). This indicates that the microviscosity of the cytoplasm surrounding the glutamine molecules is not much greater than 1.3 cP. By contrast, for 15N omega, omega ' of arginine, which is sequestered in vacuoles containing polyphosphates, the intracellular T1 (1.1 s) was only one-fourth of that in the medium (4.6 s). In model systems, the T1 of 15N omega, omega ' in a 1 M aqueous solution of arginine containing 0.2 M pentaphosphate was 0.95 s, whereas in an isoviscous (2.8 cP) solution without pentaphosphate, the T1 was 1.8 s. These results suggest either that the vacuolar viscosity is substantially above 2.8 cP or that the omega, omega '-nitrogens of vacuolar arginine are associated with a polyanion, possibly polyphosphate. The implications of these results for the properties of the vacuolar interior are discussed in relation to the mechanism of amino acid compartmentation.
The pools of arginine and ornithine rapidly disappear during nitrogen starvation of Neurospora crassa. Much of this disappearance can be accounted for by degradation catalyzed by preexisting catabolic enzymes. Purine degradation is also initiated by nitrogen metabolic stress. Mobilization of these compounds into degradative reactions does not appear to be a general response to nutritional stress since neither carbon starvation nor inhibition of protein synthesis elicits this response. It is suggested that nitrogen starvation may specifically alter the distribution of arginine and ornithine between vesicles and cytosol. This would be sufficient to initiate and maintain their degradation. These result suggest that compartmentation of amino acids provides a metabolic reserve to be utilized during periods of specific nutritional stress.
The nitrogen-15 chemical shift of the N1 (tau)-nitrogen of 15N-labeled histidine and the half-height line widths of proton-coupled resonances of the delta- and omega,omega'-nitrogens of 15N-labeled arginine and of the alpha-nitrogens of 15N-labeled alanine and proline were measured in intact mycelia of Neurospora crassa to obtain to estimates of intracellular pH. For intracellular 15N-labeled histidine, the N1 (tau)-nitrogen chemical shift was 200.2 ppm. In vitro measurements showed that the chemical shift was slightly affected by the presence of phosphate, with which the basic amino acids may be associated in vivo. These considerations indicate a pH of 5.7-6.0 for the environment of intracellular histidine. The half-height line widths of the delta- and omega,omega'-nitrogens of [15N]arginine were 15 and 26 Hz, respectively. In vitro studies showed that these line widths also are influenced by the presence of phosphate, and, after suitable allowance for this, the line widths indicate pH 6.1-6.5 for intracellular arginine. The half-height line widths for intracellular alanine and proline were 17 and 12 Hz, respectively, which are consistent with an intracellular pH of 7.1-7.2. Pools of histidine and arginine are found principally in the vacuole of Neurospora, most likely in association with polyphosphates. Proline and alanine are cytoplasmic. The results reported here are consistent with these localizations and indicate that the vacuolar pH is 6.1 +/- 0.4 while the cytoplasmic pH is 7.15 +/- 0.10. Comparisons of these estimates with those obtained by other techniques and their implications for vacuolar function are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.