The exoenzyme S regulon is a set of coordinately regulated virulence genes of Pseudomonas aeruginosa. Proteins encoded by the regulon include a type III secretion and translocation apparatus, regulators of gene expression, and effector proteins. The effector proteins include two enzymes with ADP-ribosyltransferase activity (ExoS and ExoT) and an acute cytotoxin (ExoU). In this study, we identified ExoY as a fourth effector protein of the regulon. ExoY is homologous to the extracellular adenylate cyclases of Bordetella pertussis (CyaA) and Bacillus anthracis (EF). The homology among the three adenylate cyclases is limited to two short regions, one of which possesses an ATP-binding motif. In assays for adenylate cyclase activity, recombinant ExoY (rExoY) catalyzed the formation of cAMP with a specific activity similar to the basal activity of CyaA. In contrast to CyaA and EF, rExoY activity was not stimulated or activated by calmodulin. A 500-fold stimulation of activity was detected following the addition of a cytosolic extract from Chinese hamster ovary (CHO) cells. These results indicate that a eukaryotic factor, distinct from calmodulin, enhances rExoY catalysis. Site-directed mutagenesis of residues within the putative active site of ExoY abolished adenylate cyclase activity. Infection of CHO cells with ExoY-producing strains of P. aeruginosa resulted in the intracellular accumulation of cAMP. cAMP accumulation within CHO cells depended on an intact type III translocation apparatus, demonstrating that ExoY is directly translocated into the eukaryotic cytosol.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that can cause fatal acute lung infections in critically ill individuals. Damage to the lung epithelium is associated with the expression of toxins that are directly injected into eukaryotic cells through a type Ill-mediated secretion and translocation mechanism. Here we show that the P. aeruginosa homolog of the Yersinia V antigen, PcrV, is involved in the translocation of type III toxins. Vaccination against PcrV ensured the survival of challenged mice and decreased lung inflammation and injury. Antibodies to PcrV inhibited the translocation of type III toxins.
Summary Bacterial lineages that chronically infect cystic fibrosis (CF) patients genetically diversify during infection. However, the mechanisms driving diversification are unknown. By dissecting 10 CF lung pairs and studying ~12,000 regional isolates, we were able to investigate whether clonally-related Pseudomonas aeruginosa inhabiting different lung regions evolve independently and differ functionally. Phylogenetic analysis of genome sequences showed that regional isolation of P. aeruginosa drives divergent evolution. We investigated the consequences of regional evolution by studying isolates from mildly and severely-diseased lung regions and found evolved differences in bacterial nutritional requirements, host-defense and antibiotic resistance, and virulence due to hyperactivity of type 3 secretion systems. These findings suggest that bacterial intermixing is limited in CF lungs, and that regional selective pressures may markedly differ. The findings also may explain how specialized bacterial variants arise during infection, and raise the possibility that pathogen diversification occurs in other chronic infections characterized by spatially heterogeneous conditions.
Exoenzyme S is an extracellular ADP-ribosyltransferase of Pseudomonas aeruginosa. Transposon mutagenesis of P. aeruginosa 388 was used to identify genes required for exoenzyme S production. Five Tn5Tc insertion mutants were isolated which exhibited an exoenzyme S-deficient phenotype (388::Tn5Tc 469, 550, 3453, 4885, and 5590). Mapping experiments demonstrated that 388::Tn5Tc 3453, 4885, and 5590 possessed insertions within a 5.0 kb EcoRI fragment that is not contiguous with the exoenzyme S trans-regulatory operon. 388::Tn5Tc 469 and 550 mapped to a region downstream of the trans-regulatory operon which has been previously shown to contain a promoter region that is co-ordinately regulated with exoenzyme S synthesis. Nucleotide sequence analysis of a 7.2 kb region flanking the 388::Tn5Tc 469 and 550 insertions, identified 12 contiguous open reading frames (ORFs). Database searches indicated that the first ORF, ExsD, is unique. The other 11 ORFs demonstrated high homology to the YscB-L proteins of the yersiniae Yop type III export apparatus. RNase-protection analysis of wild-type and mutant strains indicated that exsD and pscB-L form an operon. To determine whether ExoS was exported by a type III mechanism, derivatives consisting of internal deletions or lacking amino- or carboxy-terminal residues were expressed in P. aeruginosa. Deletion analyses indicated that the amino-terminal nine residues are required for ExoS export. Combined data from mutagenesis, regulatory, expression, and sequence analyses provide strong evidence that P. aeruginosa possesses a type III secretion apparatus which is required for the export of exoenzyme S and potentially other co-ordinately regulated proteins.
SummaryExpression of the Pseudomonas aeruginosa type III secretion system is induced by contact with eukaryotic cells, serum or low Ca 2+ concentrations. We report that ExsD, a unique protein, is a negative regulator of the type III regulon. Localization studies indicate that ExsD is not secreted by P. aeruginosa . To determine the role of exsD , a non-polar deletion was
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.