People seem to compute the ensemble statistics of objects and use this information to support the recall of individual objects in visual working memory. However, there are many different ways that hierarchical structure might be encoded. We examined the format of structured memories by asking subjects to recall the locations of objects arranged in different spatial clustering structures. Consistent with previous investigations of structured visual memory, subjects recalled objects biased toward the center of their clusters. Subjects also recalled locations more accurately when they were arranged in fewer clusters containing more objects, suggesting that subjects used the clustering structure of objects to aid recall. Furthermore, subjects had more difficulty recalling larger relative distances, consistent with subjects encoding the positions of objects relative to clusters and recalling them with magnitude-proportional (Weber) noise. Our results suggest that clustering improved the fidelity of recall by biasing the recall of locations toward cluster centers to compensate for uncertainty and by reducing the magnitude of encoded relative distances.
In an unfamiliar environment, searching for and navigating to a target requires that spatial information be acquired, stored, processed, and retrieved. In a study encompassing all of these processes, participants acted as taxicab drivers who learned to pick up and deliver passengers in a series of small virtual towns. We used data from these experiments to refine and validate MAGELLAN, a cognitive map-based model of spatial learning and wayfinding. MAGELLAN accounts for the shapes of participants’ spatial learning curves, which measure their experience-based improvement in navigational efficiency in unfamiliar environments. The model also predicts the ease (or difficulty) with which different environments are learned and, within a given environment, which landmarks will be easy (or difficult) to localize from memory. Using just two free parameters, MAGELLAN provides a useful account of how participants’ cognitive maps evolve over time with experience, and how participants use the information stored in their cognitive maps to navigate and explore efficiently.
What happens to memories as we forget? They might gradually lose fidelity, lose their associations (and thus be retrieved in response to the incorrect cues), or be completely lost. Typical long-term memory studies assess memory as a binary outcome (correct/incorrect), and cannot distinguish these different kinds of forgetting. Here we assess long-term memory for scalar information, thus allowing us to quantify how different sources of error diminish as we learn, and accumulate as we forget. We trained subjects on visual and verbal continuous quantities (the locations of objects and the distances between major cities, respectively), tested subjects after extended delays, and estimated whether recall errors arose due to imprecise estimates, misassociations, or complete forgetting. Although subjects quickly formed precise memories and retained them for a long time, they were slow to learn correct associations and quick to forget them. These results suggest that long-term recall is especially limited in its ability to form and retain associations.
The world around us is filled with complex objects, full of color, motion, shape, and texture, and these features seem to be represented separately in the early visual system. Anne Treisman pointed out that binding these separate features together into coherent conscious percepts is a serious challenge, and she argued that selective attention plays a critical role in this process. Treisman also showed that, consistent with this view, outside the focus of attention we suffer from illusory conjunctions: misperceived pairings of features into objects. Here we used Treisman's logic to study the structure of pre-attentive representations of multipart, multicolor objects, by exploring the patterns of illusory conjunctions that arise outside the focus of attention. We found consistent evidence of some preattentive binding of colors to their parts, and weaker evidence of binding multiple colors of the same object. The extent to which such hierarchical binding occurs seems to depend on the geometric structure of multipart objects: Objects whose parts are easier to separate seem to exhibit greater pre-attentive binding. Together, these results suggest that representations outside the focus of attention are not entirely a Bshapeless bundles of features,^but preserve some meaningful object structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.