Airtime lending default rates are typically lower than those experienced by banks and microfinance institutions (MFIs) but are likely to grow as the service is offered more widely. In this paper, credit scoring techniques are reviewed, and that knowledge is built upon to create an appropriate machine learning model for airtime lending. Over three million loans belonging to more than 41 thousand customers with a repayment period of three months are analysed. Logistic Regression, Decision Trees and Random Forest are evaluated for their ability to classify defaulters using several cross-validation approaches and the latter model performed best. When the default rate is below 2%, it is better to offer everyone a loan. For higher default rates, the model substantially enhances profitability. The model quadruples the tolerable level of default rate for breaking even from 8% to 32%. Nonlinear classification models offer considerable potential for credit scoring, coping with higher levels of default and therefore allowing for larger volumes of customers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.