Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments1-7 and that lipids can bind to specific sites, for example in potassium channels8. Fundamental questions remain however regarding the extent of membrane protein selectivity toward lipids. Here we report a mass spectrometry (MS) approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL), aquaporin Z (AqpZ), and the ammonia channel (AmtB) using ion mobility MS (IM-MS), which reports gas-phase collision cross sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas-phase. By resolving lipid-bound states we then rank bound lipids based on their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Results show that lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability, the highest-ranking lipid however is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation9. AqpZ is also stabilized by many lipids with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays, we discover that cardiolipin modulates AqpZ function. Analogous experiments identify AmtB as being highly selective for phosphatidylglycerol prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that reposition AmtB residues to interact with the lipid bilayer. Overall our results demonstrate that resistance to unfolding correlates with specific lipid-binding events enabling distinction of lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these findings will be influential not only for defining the selectivity of membrane proteins toward lipids but also for understanding the role of lipids in modulating function or drug binding.
Now routine is the ability to investigate soluble and membrane protein complexes in the gas phase of a mass spectrometer while preserving folded structure and ligand-binding properties. Several recent transformative developments have occurred to arrive at this point. These include advances in mass spectrometry instrumentation, particularly with respect to resolution; the ability to study intact membrane protein complexes released from detergent micelles; and the use of protein unfolding in the gas phase to obtain stability parameters. Together, these discoveries are providing unprecedented information on the compositional heterogeneity of biomacromolecules, the unfolding trajectories of multidomain proteins, and the stability imparted by ligand binding to both soluble and membrane-embedded protein complexes. We review these recent breakthroughs, highlighting the challenges that had to be overcome and the physicochemical insight that can now be gained from studying proteins and their assemblies in the gas phase.
The effects of protein–ligand interactions on protein stability are typically monitored by a number of established solution-phase assays. Few translate readily to membrane proteins. We have developed an ion-mobility mass spectrometry approach, which discerns ligand binding to both soluble and membrane proteins directly via both changes in mass and ion mobility, and assesses the effects of these interactions on protein stability through measuring resistance to unfolding. Protein unfolding is induced through collisional activation, which causes changes in protein structure and consequently gas-phase mobility. This enables detailed characterization of the ligand-binding effects on the protein with unprecedented sensitivity. Here we describe the method and software required to extract from ion mobility data the parameters that enable a quantitative analysis of individual binding events. This methodology holds great promise for investigating biologically significant interactions between membrane proteins and both drugs and lipids that are recalcitrant to characterization by other means.
Despite the growing importance of the mass spectrometry of membrane proteins, it is not known how their transfer from solution into vacuum affects their stability and structure. To address this we have carried out a systematic investigation of ten membrane proteins solubilized in different detergents and used mass spectrometry to gain physicochemical insight into the mechanism of their ionization and desolvation. We show that the chemical properties of the detergents mediate the charge state, both during ionization and detergent removal. Using ion mobility mass spectrometry, we monitor the conformations of membrane proteins and show how the surface charge density dictates the stability of folded states. We conclude that the gas-phase stability of membrane proteins is increased when a greater proportion of their surface is lipophilic and is consequently protected by the physical presence of the micelle.
The invertebrate cytolysin lysenin is a member of the aerolysin family of pore-forming toxins that includes many representatives from pathogenic bacteria. Here we report the crystal structure of the lysenin pore and provide insights into its assembly mechanism. The lysenin pore is assembled from nine monomers via dramatic reorganization of almost half of the monomeric subunit structure leading to a β-barrel pore ∼10 nm long and 1.6–2.5 nm wide. The lysenin pore is devoid of additional luminal compartments as commonly found in other toxin pores. Mutagenic analysis and atomic force microscopy imaging, together with these structural insights, suggest a mechanism for pore assembly for lysenin. These insights are relevant to the understanding of pore formation by other aerolysin-like pore-forming toxins, which often represent crucial virulence factors in bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.