The compensation heat pulse method (CHPM) is of limited value for measuring low rates of sap flow in woody plants. Recent application of the CHPM to woody roots has further illustrated some of the constraints of this technique. Here we present an improved heat pulse method, termed the heat ratio method (HRM), to measure low and reverse rates of sap flow in woody plants. The HRM has several important advantages over the CHPM, including improved measurement range and resolution, protocols to correct for physical and thermal errors in sensor deployment, and a simple linear function to describe wound effects. We describe the theory and methodological protocols of the HRM, provide wound correction coefficients, and validate the reliability and accuracy of the technique against gravimetric measurements of transpiration.
Deep water uptake and hydraulic redistribution (HR) are important processes in many forests, savannas and shrublands. We investigated HR in a semi-arid woodland above a unique cave system in central Texas to understand how deep root systems facilitate HR. Sap flow was measured in 9 trunks, 47 shallow roots and 12 deep roots of Quercus, Bumelia and Prosopis trees over 12 months. HR was extensive and continuous, involving every tree and 83% of roots, with the total daily volume of HR over a 1 month period estimated to be approximately 22% of daily transpiration. During drought, deep roots at 20 m depth redistributed water to shallow roots (hydraulic lift), while after rain, shallow roots at 0-0.5 m depth redistributed water among other shallow roots (lateral HR). The main driver of HR appeared to be patchy, dry soil near the surface, although water may also have been redistributed to mid-level depths via deeper lateral roots. Deep roots contributed up to five times more water to transpiration and HR than shallow roots during drought but dramatically reduced their contribution after rain. Our results suggest that deep-rooted plants are important drivers of water cycling in dry ecosystems and that HR can significantly influence landscape hydrology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.