Metabolic profiling, metabolomic and metabonomic studies mainly involve the multicomponent analysis of biological fluids, tissue and cell extracts using NMR spectroscopy and/or mass spectrometry (MS). We summarize the main NMR spectroscopic applications in modern metabolic research, and provide detailed protocols for biofluid (urine, serum/plasma) and tissue sample collection and preparation, including the extraction of polar and lipophilic metabolites from tissues. 1H NMR spectroscopic techniques such as standard 1D spectroscopy, relaxation-edited, diffusion-edited and 2D J-resolved pulse sequences are widely used at the analysis stage to monitor different groups of metabolites and are described here. They are often followed by more detailed statistical analysis or additional 2D NMR analysis for biomarker discovery. The standard acquisition time per sample is 4-5 min for a simple 1D spectrum, and both preparation and analysis can be automated to allow application to high-throughput screening for clinical diagnostic and toxicological studies, as well as molecular phenotyping and functional genomics.
Metabolic phenotypes are the products of interactions among a variety of factors-dietary, other lifestyle/environmental, gut microbial and genetic. We use a large-scale exploratory analytical approach to investigate metabolic phenotype variation across and within four human populations, based on 1H NMR spectroscopy. Metabolites discriminating across populations are then linked to data for individuals on blood pressure, a major risk factor for coronary heart disease and stroke (leading causes of mortality worldwide). We analyse spectra from two 24-hour urine specimens for each of 4,630 participants from the INTERMAP epidemiological study, involving 17 population samples aged 40-59 in China, Japan, UK and USA. We show that urinary metabolite excretion patterns for East Asian and western population samples, with contrasting diets, diet-related major risk factors, and coronary heart disease/stroke rates, are significantly differentiated (P < 10(-16)), as are Chinese/Japanese metabolic phenotypes, and subgroups with differences in dietary vegetable/animal protein and blood pressure. Among discriminatory metabolites, we quantify four and show association (P < 0.05 to P < 0.0001) of mean 24-hour urinary formate excretion with blood pressure in multiple regression analyses for individuals. Mean 24-hour urinary excretion of alanine (direct) and hippurate (inverse), reflecting diet and gut microbial activities, are also associated with blood pressure of individuals. Metabolic phenotyping applied to high-quality epidemiological data offers the potential to develop an area of aetiopathogenetic knowledge involving discovery of novel biomarkers related to cardiovascular disease risk.
Metabolic profiling, metabolomic and metabonomic studies require robust study protocols for any large-scale comparisons and evaluations. Detailed methods for solution-state NMR spectroscopy have been summarized in an earlier protocol. This protocol details the analysis of intact tissue samples by means of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy and we provide a detailed description of sample collection, preparation and analysis. Described here are (1)H NMR spectroscopic techniques such as the standard one-dimensional, relaxation-edited, diffusion-edited and two-dimensional J-resolved pulse experiments, as well as one-dimensional (31)P NMR spectroscopy. These are used to monitor different groups of metabolites, e.g., sugars, amino acids and osmolytes as well as larger molecules such as lipids, non-invasively. Through the use of NMR-based diffusion coefficient and relaxation times measurements, information on molecular compartmentation and mobility can be gleaned. The NMR methods are often combined with statistical analysis for further metabonomics analysis and biomarker identification. The standard acquisition time per sample is 8-10 min for a simple one-dimensional (1)H NMR spectrum, giving access to metabolite information while retaining tissue integrity and hence allowing direct comparison with histopathology and MRI/MRS findings or the evaluation together with biofluid metabolic-profiling data.
The goal of this group is to define the reporting requirements associated with the statistical analysis (including univariate, multivariate, informatics, machine learning etc.) of metabolite data with respect to other measured/collected experimental data (often called metadata). These definitions will embrace as many aspects of a complete metabolomics study as possible at this time. In chronological order this will include: Experimental Design, both in terms of sample collection/matching, and data acquisition scheduling of samples through whichever spectroscopic technology used; Deconvolution (if required); Pre-processing, for example, data cleaning, outlier detection, row/column scaling, or other transformations; Definition and parameterization of subsequent
Chemical shift variation in small-molecule (1)H NMR signals of biofluids complicates biomarker information recovery in metabonomic studies when using multivariate statistical and pattern recognition tools. Current peak realignment methods are generally time-consuming or align major peaks at the expense of minor peak shift accuracy. We present a novel recursive segment-wise peak alignment (RSPA) method to reduce variability in peak positions across the multiple (1)H NMR spectra used in metabonomic studies. The method refines a segmentation of reference and test spectra in a top-down fashion, sequentially subdividing the initial larger segments, as required, to improve the local spectral alignment. We also describe a general procedure that allows robust comparison of realignment quality of various available methods for a range of peak intensities. The RSPA method is illustrated with respect to 140 (1)H NMR rat urine spectra from a caloric restriction study and is compared with several other widely used peak alignment methods. We demonstrate the superior performance of the RSPA alignment over a wide range of peaks and its capacity to enhance interpretability and robustness of multivariate statistical tools. The approach is widely applicable for NMR-based metabolic studies and is potentially suitable for many other types of data sets such as chromatographic profiles and MS data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.