. (2015). The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: implications for sediment quality assessment. Environmental Pollution, 208 (Part B), 590-599. See next page for additional authorsThe impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: implications for sediment quality assessment AbstractBioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis. The concentrations of dissolved copper decreased and manganese increased with increased bioturbation. For copper a strong correlation was observed between increased bivalve survival (53-100%) and dissolved concentrations in the overlying water. Increased bioturbation intensity resulted in greater tissue concentrations for chromium and zinc in some test sediments. Overall, the results highlight the strong influence that the natural bioturbation activities from one organism may have on the risk contaminants pose to other organisms within the local environment. The characterisation of field-based exposure conditions concerning the biotic or abiotic resuspension of sediments and the rate of attenuation of released contaminants through dilution or readsorption may enable laboratorybased bioassay designs to be adapted to better match those of the assessed environment. Strong correlations between bioaccumulated and dissolved Cd, Cr, Pb, Zn, Cu and Ni. Weak correlations between bioaccumulated and particulate metals. 2 Capsule AbstractThis study investigated the impact of sediment bioturbation intensity on metal bioavailability and toxicity to aquatic organisms, and the implications of this to toxicity test design. Abstract:Bioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis. The concentrations of dissolved copper decreased and manganese increased with increased bioturbation. For copper a strong correlation was observed between increased bivalve survival (53 to 100%) and dissolved concentrations in the overlying water. Increased bioturbation intensity resulted in greater tissue concentrations for chromium and zinc in some test sediments. O...
The burrowing and feeding activities of benthic organisms can alter metal speciation in sediments and affect an organisms' exposure to metals. Recently, the performance of the in situ technique of diffusive gradients in thin films (DGT) for predicting metal bioavailability has been investigated in response to the increasing demand of considering contaminant bioavailability in sediment quality assessments. In this study, we test the ability of the DGT technique for predicting the metal bioavailability in clean and contaminated sediments that are being subjected to varying degrees of sediments disturbance: low bioturbation (bivalve Tellina deltoidalis alone) and high bioturbation (bivalve and actively burrowing amphipod, Victoriopisa australiensis). Significant release of DGT-labile Cd, Ni, Pb, and Zn, but lower Cu and Fe, occurred in the pore and overlying waters of sediments exposed to high bioturbation conditions, resulting in higher bioaccumulation of zinc in bivalves. Strong relationships were found between bioaccumulation of Pb and Zn and time-integrated DGT-metal fluxes, whereas poor relationships were obtained using total or dilute-acid extractable metal concentrations. This results demonstrate that DGT is a useful tool for assessing metal bioavailability in sediments and can provide useful predictions of metal bioavailable to benthic organisms in dynamic sediment environments.
Hypersaline sediments derived from poor land management or the decommissioning of large-scale salt production contribute to the long-term degradation of aquatic environments. Obstacles impeding remediation of these environments include salt crusts restricting benthic recolonisation, hypersalinity-induced toxicity to organisms, and disruption of biogeochemical cycles. Remediation often focuses on engineered solutions, despite sediment-biota interactions often playing a crucial role in improving long-term remediation and restoration of contaminated areas. The presence of extensive bioturbating communities can assist with flushing of excess salt ions, and the reduction of excess nutrients. Here we investigated the tolerance limits that may impede benthic organism recolonisation of hypersaline sediments. Bioassays on dilutions of a hypersaline sediment (∼400 psu (practical salinity units)) and extracted porewaters were used to assess the acute and chronic tolerances of a range of benthic species. Amphipod, copepod and shrimp species were the least tolerant to hypersalinity; bivalve and gastropod species displayed intermediate tolerance; and crab and polychaete species were the most tolerant, i.e. able to endure prolonged exposure in waters at ≥60 psu. Avoidance tests found many species avoid salinities >50 psu. Short-term endurance tests (time to death) indicated thresholds in the 52-70 psu range through tidal cycle exposures of 6 h (semi-diurnal), 12 h (diurnal), 24 h and 48 h (prolonged). Amphipod reproduction and shrimp larvae development bioassays had EC30's of 46 psu and EC50's in the 54-65 psu range, indicating potential to maintain populations at salinities up to 65 psu. These results will assist in designing successful monitored natural recovery strategies for salt ponds that may supplement the initial engineered approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.