Bone is removed or replaced in defined locations by targeting osteoclasts and osteoblasts in response to its local history of mechanical loading. There is increasing evidence that osteocytes modulate this targeting by their apoptosis, which is associated with locally increased bone resorption. To investigate the role of osteocytes in the control of loading-related modeling or remodeling, we studied the effects on osteocyte viability of short periods of mechanical loading applied to the ulnae of rats. Loading, which produced peak compressive strains of -0.003 or -0.004, was associated with a 78% reduction in the resorption surface at the midshaft. The same loading regimen resulted in a 40% relative reduction in osteocyte apoptosis at the same site 3 days after loading compared with the contralateral side (P = 0.01). The proportion of osteocytes that were apoptotic was inversely related to the estimated local strain (P < 0.02). In contrast, a single short period of loading resulting in strains of -0.008 engendered both tissue microdamage and subsequent bone remodeling and was associated with an eightfold increase in the proportion of apoptotic osteocytes (P = 0.02) at 7 days. This increase in osteocyte apoptosis was transient and preceded both intracortical remodeling and death of half of the osteocytes (P < 0.01). The data suggest that osteocytes might use their U-shaped survival response to strain as a mechanism to influence bone remodeling. We hypothesize that this relationship reflects a causal mechanism by which osteocyte apoptosis regulates bone's structural architecture.
Abstract. The role of the latent TGF-[3 binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-[31 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-[3. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-~, as a structural matrix protein that may play a role in bone formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.