Early administered antibiotics do not impact mortality in critically ill patients with COVID-19.
Purpose The length of time a critically ill coronavirus disease 2019 (COVID-19) patient remains infectious and should therefore be isolated remains unknown. This prospective study was undertaken in critically ill patients to evaluate the reliability of single negative real-time polymerase chain reaction (RT-PCR) in lower tracheal aspirates (LTA) in predicting a second negative test and to analyze clinical factors potentially influencing the viral shedding. Methods From April 9, 2020 onwards, intubated COVID-19 patients treated in the intensive care unit were systematically evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by RT-PCR of nasopharyngeal swabs and LTA. The time to negativity was defined as the time between the onset of symptoms and the viral clearance in LTA. In order to identify risk factors for prolonged viral shedding, we used univariate and multivariate Cox proportional hazards models. Results Forty-eight intubated SARS-CoV-2 patients were enrolled. Overall, we observed that the association of the first negative RT-PCR with a second negative result was 96.7%. Median viral shedding was 25 (IQR: 21.5-28) days since symptoms' onset. In the univariate Cox model analysis, type 2 diabetes mellitus was associated with a prolonged viral RNA shedding (hazard ratio [HR]: 0.41, 95% CI: 0.06-3.11, p = 0.04). In the multivariate Cox model analysis, type 2 diabetes was associated with a prolonged viral RNA shedding (HR: 0.31, 95% CI: 0.11-0.89, p = 0.029). Conclusion Intubated patients with type 2 diabetes mellitus may have prolonged SARS-CoV-2 shedding. In critically ill COVID-19 patients, one negative LTA should be sufficient to assess and exclude infectivity.
Background Data on SARS-CoV-2 load in lower respiratory tract (LRT) are scarce. Our objectives were to describe the viral shedding and the viral load in LRT and to determine their association with mortality in critically ill COVID-19 patients. Methods We conducted a binational study merging prospectively collected data from two COVID-19 reference centers in France and Switzerland. First, we described the viral shedding duration (i.e., time to negativity) in LRT samples. Second, we analyzed viral load in LRT samples. Third, we assessed the association between viral presence in LRT and mortality using mixed-effect logistic models for clustered data adjusting for the time between symptoms’ onset and date of sampling. Results From March to May 2020, 267 LRT samples were performed in 90 patients from both centers. The median time to negativity was 29 (IQR 23; 34) days. Prolonged viral shedding was not associated with age, gender, cardiac comorbidities, diabetes, immunosuppression, corticosteroids use, or antiviral therapy. The LRT viral load tended to be higher in non-survivors. This difference was statistically significant after adjusting for the time interval between onset of symptoms and date of sampling (OR 3.78, 95% CI 1.13–12.64, p = 0.03). Conclusions The viral shedding in LRT lasted almost 30 days in median in critically ill patients, and the viral load in the LRT was associated with the 6-week mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.