Despite the ubiquity of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in applications demanding mechanical flexibility, the effect on the mechanical properties of common additives—i.e., dimethylsulfoxide (DMSO), Zonyl fluorosurfactant (Zonyl), and poly(ethyleneimine) (PEI)—has not been reported. This paper describes these effects and uses plasticized films in solar cells and mechanical sensors for the detection of human motion. The tensile moduli of films spin‐coated from solutions containing 0%, 5%, and 10% DMSO and 0.1%, 1%, and 10% Zonyl (nine samples total) are measured using the buckling technique, and the ductility is inferred from measurements of the strain at which cracks form on elastic substrates. Elasticity and ductility are maximized in films deposited from solutions containing 5% DMSO and 10% Zonyl, but the conductivity is greatest for samples containing 0.1% Zonyl. These experiments reveal enlargement of presumably PEDOT‐rich grains, visible by atomic force microscopy, when the amount of DMSO is increased from 0% to 5%. PEI—which is used to lower the work function of PEDOT:PSS—has a detrimental effect on the mechanical properties of the PEDOT:PSS/PEI bilayer films. Wearable electronic sensors employing PEDOT:PSS films containing 5% DMSO and 10% Zonyl are fabricated, which exhibit detectable responses at 20% strain and high mechanical robustness through elastic deformation.
The mechanical properties of organic semiconductors and the mechanical failure mechanisms of devices play critical roles in the yield of modules in roll-to-roll manufacturing and the operational stability of organic solar cells (OSCs) in portable and outdoor applications. This paper begins by reviewing the mechanical propertiesprincipally stiffness and brittleness-of pure films of organic semiconductors. It identifies several determinants of the mechanical properties, including molecular structures, polymorphism, and microstructure and texture.Next, a discussion of the mechanical properties of polymer-fullerene bulk heterojunction blends reveals the strong influence of the size and purity of the fullerenes, the effect of processing additives as plasticizers, and the details of molecular mixing-i.e., the extent of intercalation of fullerene molecules between the side chains of the polymer. Mechanical strain in principle affects the photovoltaic output of devices in several ways, from strain-evolved changes in alignment of chains, degree of crystallinity, and orientation of texture, to debonding, cohesive failure, and cracking, which dominate changes in the high-strain regime. These conclusions highlight the importance of mechanical properties and mechanical effects on the viability of OSCs during manufacture and in operational environments. The review-whose focus is on molecular and microstructural determinants of mechanical properties-concludes by suggesting several potential routes to maximize both mechanical resilience and photovoltaic performance for improving the lifetime of devices in the near term and enabling devices that require extreme deformation (i.e., stretchability and ultra-flexibility) in the future. Broader contextOrganic solar cells (OSCs) are potentially an inexpensive source of renewable energy that can be manufactured at speeds that dwarf the rate at which wafer-based devices (i.e., silicon) can be fabricated. While low efficiencies of OSCs have historically been regarded as a major roadblock, the performance of this class of printable devices is improving rapidly, and module efficiencies of ten percent now seem possible. The susceptibility of polymer-based active layers to undergo thermally activated phase separation, photochemical damage, and other forms of degradation has motivated large and expanding literature devoted to understanding and improving the long-term stability of modules. Conspicuously absent from the literature, however, is a similar effort directed toward understanding the mechanical properties of organic semiconductors and their effects on the lifetime of devices against mechanical failure. The principal advantage of OSCs and all printed electronic devices is, nonetheless, roll-to-roll manufacturing on exible substrates. Manufacturing, installation, and use of these devices will thus require substantial mechanical resilience. Moreover, the ability to make devices on ultrathin plastic sheets-necessary to achieve low production energy for whole modules-requires that the acti...
The effect of hole localization on photocatalytic activity of Pt-tipped semiconductor nanocrystals is investigated. By tuning the energy balance at the semiconductor-ligand interface, we demonstrate that hydrogen production on Pt sites is efficient only when electron-donating molecules are used for stabilizing semiconductor surfaces. These surfactants play an important role in enabling an efficient and stable reduction of water by heterostructured nanocrystals as they fill vacancies in the valence band of the semiconductor domain, preventing its degradation. In particular, we show that the energy of oxidizing holes can be efficiently transferred to a ligand moiety, leaving the semiconductor domain intact. This allows reusing the inorganic portion of the "degraded" nanocrystal-ligand system simply by recharging these nanoparticles with fresh ligands.
This Perspective describes electronic materials whose molecular structure permits extreme deformation without the loss of electronic function. This approach“molecularly stretchable” electronicsis complementary to the highly successful approaches enabled by stretchable composite materials. We begin by identifying three general types of stretchable electronic materials: (1) random composites of rigid structures sitting atop or dispersed in an elastic matrix, (2) deterministic composites of patterned serpentine, wavy, or fractal structures on stretchable substrates, and (3) molecular materialsnoncomposite conductors and semiconductorsthat accommodate strain intrinsically by the rational design of their chemical structures. We then identify a short-term and a long-term goal of intrinsically stretchable organic electronics: the short-term goal is improving the mechanical stability of devices for which commercialization seems inevitable; the long-term goal is enabling of electronic devices in which every component is highly elastic, tough, ductile, or some combination thereof. Finally, we describe our and others’ attempts to identify the molecular and microstructural determinants of the mechanical properties of organic semiconductors, along with applications of especially deformable materials in stretchable and mechanically robust devices. Our principal conclusion is that while the field of plastic electronics has achieved impressive gains in the last several years in terms of electronic performance, all semiconducting polymers are not equally “plastic” in the sense of “deformable”, and thus materials tested on glass substrates may fail in the real world and may not be amenable to stretchableor even modestly flexiblesystems. The goal of this Perspective is to draw attention to the ways in which organic conductors and semiconductors specifically designed to accommodate large strains can enable highly deformable devices, which embody the original vision of organic electronics.
Ultrafast transient absorption spectroscopy was used to investigate the nature of photoinduced charge transfer processes taking place in ZnSe/CdS/Pt colloidal heteronanocrystals. These nanoparticles consist of a dot-in-a-rod semiconductor domain (ZnSe/CdS) coupled to a Pt tip. Together the three components are designed to dissociate an electron-hole pair by pinning the hole in the ZnSe domain while allowing the electron to transfer into the Pt tip. Separated charges can then induce a catalytic reaction, such as the light-driven hydrogen production. Present measurements demonstrate that the internal electron-hole separation is fast and results in the localization of both charges in nonadjacent parts of the nanoparticle. In particular, we show that photoinduced holes become confined within the ZnSe domain in less than 2 ps, while electrons take approximately 15 ps to transition into a Pt tip. More importantly, we demonstrate that the presence of the ZnSe dot within the CdS nanorods plays a key role both in enabling photoinduced separation of charges and in suppressing their backward recombination. The implications of the observed exciton dynamics to photocatalytic function of ZnSe/CdS/Pt heteronanocrystals are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.